Hypercube Supercomputers

JOHN P. HAYES, reLLow, 1EeEe AND TREVOR MUDGE, SENIOR MEMBER, IEEE

The architecture and applications of the class of highly parallel
distributed-memory multiprocessors based on the hypercube
interconnection structure are surveyed. The history of hypercube
computers from their conceptual origins in the 1960s to the recent
introduction of commercial machines is briefly reviewed. The
properties of hypercube graphs relevant to their use in supercom-
puters are examined, including connectivity, routing, and embed-
ding. The hardware and software characteristics of current hyper-
cubes are discussed, emphasizing the unique aspects of their
operating systems and programming languages. A sample C pro-
gram is presented to illustrate the single-code multiple-data pro-
gramming style typical of distributed-memory machines in gen-
eral, and hypercubes in particular. Two contrasting hypercube
applications are presented and analyzed: image processing and
branch-and-bound optimization. The paper concludes with a dis-
cussion of current trends.

I. INTRODUCTION

Parallel processing seeks toimprove the speed with which
acomputation can be done by breaking itinto subparts and
concurrently executing as many of these as possible. The
past few years have seen the emergence of commercial
computers that employ hundreds of processors working in
parallel to achieve the level of performance previously
found only in multimillion-dollar supercomputers [1]. In
many of these ““massively’ parallel machines, the proces-
sors are connected in a regular pattern called a hypercube.
By using hundreds of low-cost microprocessors, the cost
of these unconventional multiprocessors can be kept rel-
atively low, putting them within reach of the single user.
At the same time, extremely high computing performance
can be achieved. To emphasize these points, one manu-
facturer has called its hypercube product a “personal
supercomputer’ [2]. This paper explores the origins, archi-
tecture, and applications of hypercube-based multipro-
cessors with performance at the supercomputer level.

The parallel computers of interest here consist of many
processors and memory units which communicate via an
interconnection network. The latter can range from a single
shared bus to a complex multistage interconnection net-
work [3]. Of particular significance in determining system

Manuscript received August 5, 1988; revised June 5, 1989. This
work was supported by the Office of Naval Research under Con-
tract N00014-85-K-0531, by DoD Contract MDA904-87-C-4136, and
by NSF Contract MIP-8802771.

The authors are with the Advanced Computer Architecture Lab-
oratory, Dept. of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, M1 48109-2122, USA.

IEEE Log Number 8933020.

performance is the manner in v/hich the processors com-
municate with the memory subsystem. Two major
approaches are found in contemporary paralle! computers.
The shared-memory approach employs a single central
memory unit to which all procetsors have direct and rapid
access. Contention for this shared memory, however, can
result in serious performance loss. An alternative approach
is to provide each processor with a focal memory to which
other processors have slow and indirect access. Such a dis-
tributed-memory scheme simplifies the interconnection of
massive numbers of processors, but raises new problems
in communication efficiency.

Most recently introduced multiprocessors have a few
dozen processors connected to a shared memory over a
common high-speed bus. Exanmiples are the Sequent Bal-
ance [4] and the Encore Multimax [5]. Another class of
shared-memory multiprocessors are massively parallel
machines that provide a connection from each processor
to a large multiport shared memiory. Examples are the BBN
Butterfly [6], one of the few commiercially available machines
in this category, and the RP3, an experimental machine
developed at IBM [7]. A key feature of these machines is the
omega-type multistage interconnection network that con-
nects the processors to the shered memory (8].

Massively parallel multiprocessors are typically of the dis-
tributed-memory variety to avo d the contention problems
associated with hundreds or thousands of processors shar-
ing avery large global memory. Zommunication among the
processors, however, requires «n efficient interconnection
network. Many proposals for such networks have been
made, including meshes, pyremids, and multistage net-
works of the type mentioned at ove. Given the large variety
of these proposals, it is interesting to note that the over-
whelming majority of current commercial massively par-
allel machines are hypercube-connected.

Distributed-memory multip-ocessors such as hyper-
cubes eliminate most of the a:cess contention problems
associated with a large shared imemory. They do so by par-
titioning the system memory i1to smaller local memories
that are distributed among the available processors. Com-
munication among these local memories then becomes a
major design issue, since a relatively slow input-output
operation is needed to access shared data assigned to a
nonlocal memory. Such accesses take the form of messages
passed between the local memories of the two processors.
The management of this message-passing has major impli-
cations on all aspects of the svstem design, as well as on

0018-9219/89/1200-1829%01.00 © 1989 IEEE

PROCEEDINGS Of THE IEEE, VOL. 77, NO. 12, DECEMBER 1989

1829



applications software design. For example, a high-perfor-
mance switching network or special interprocessor com-
munication software (which usually is a part of the oper-
ating systemresident in each node)is necessary. In addition,
old algorithms must often be extensively restructured, as
we will see later, to execute efficiently in the parallel envi-
ronment created by these machines. This restructuring has
also led to major extensions to traditional programming
languages.

Ahypercube is a generalization of the 3-dimensional cube
graph to arbitrary numbers of dimensions. Just as a 3-
dimensional cube has 2° nodes (vertices), so an n-dimen-
sional cube has N = 2" nodes. Similarly, each node of a 3-
cube has 3 edges (links) connected to it, and each node of
an n-cube has n edges connected to it. Hypercube multi-
processors take this simple topology and use it to define
the interconnection pattern among 2" processors. Proces-
sors are placed at the nodes of the cube and are connected
by links along the edges. Figure Tillustrates hypercubes for
small values of n.

n=4

Fig. 1. Hypercubes forn =0,1, 2, 3, 4.

1830

Hypercube topology has several attractive features. First,
it is homogeneous or node-symmetric in the sense that the
system appears the same from each node: There are no
edges or boundaries where nodes may need to be treated
as special cases. The hypercube achieves a good balance
between the number of internode links used and their cost.
It employs nN /2 links to connect N = 2" nodes, and each
node processor has nlinks to manage. In all butafew recent
hypercubes, nodes not directly connected must commu-
nicate via messages sent through intermediate nodes in
store-and-forward fashion. The hypercube topology guar-
antees that no two nodes are more than n links apart. In
addition, other useful computational structures, most nota-
bly meshes of arbitrary dimensions, can be embedded in
a hypercube in such a way that adjacent nodes in the orig-
inal structure are also adjacent in the hypercube. Thus for
a wide class of useful applications, especially in scientific
computing, the delays associated with interprocessor com-
munication fall within acceptable limits. Another key factor
in making hypercube computers practical from a com-
mercial viewpoint is the fact that they can now be built eco-
nomically with low-cost off-the-shelf microprocessor com-
ponents[9]. Other proposals for massively parallel machines
often require complex, expensive, and specially designed
chips if they are to contain a reasonable number of inte-
grated circuits (ICs). This is a more serious restriction than
itmight first appear, since acomponent count of more than
a few tens of thousands of ICs puts air-cooled systems at
the upper limits of acceptable reliability, regardless of the
complexity of the subsystem within each IC.

The next section gives a brief history of hypercubes and
outlines the main features of hypercube architectures. Sec-
tion 111 discusses the structural properties of hypercubes
and their influence on system design and application. Soft-
ware design issues and a representative hypercube pro-
gram are presented in Section V. Section V examines two
typical applicationsin depth: image processing and branch-
and-bound optimization. Section VI concludes the survey
with a brief discussion on current status and trends.

Il.  HypercUBE COMPUTERS

The earliest study of hypercube computers was pub-
lished by Squire and Palais of the University of Michigan
in 1963. Their stated goal was to design a computer “where
the emphasis is on the programmability of highly parallel
numerical computations,”” with hardware cost a secondary
consideration [10], [11]. Among the reasons they cite for
selecting the cube organization are the ease with which
paths between nonadjacent nodes can be determined, and
the fact that all nodes are identical and interchangeable.
The proposed 12-dimensional (4096-node) Squire-Palais
machine was estimated to require 20 times the hardware
of the IBM Stretch, the largest supercomputer of the day,
but a speedup of at least 100 was anticipated.

With the advent of the single-chip microprocessor in the
early 1970s, several other proposals for microprocessor-
based hypercubes were made. In 1975 IMS Associates, a
manufacturer of personal computers, announced a 256-
node commercial hypercube based on the Intel 8080 micro-
processor, but it was never produced [12]. In 1977, Sullivan
and his colleagues at Columbia University presented a pro-
posal for a large hypercube called the Columbia Homo-
geneous Parallel Processor (CHOPP), which would have

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 12, DECEMBER 1989



contained up to a million processors [13], [14]. Also in that
year, Pease published an important study of the “indirect”
binary n-cube architecture, for which he suggested a mul-
tistage interconnection network of the omega type for
implementing the hypercube topology [15].

High hardware cost was clearly a major reason why these
early hypercube designs were never implemented. The
appearance of high-performance 32-bit microprocessor
chips and dynamic RAM chips in the 1 M-bit range in the
early 1980s made it economically feasible to construct prac-
tical hypercube computers of moderate size. The first such
machine was the 64-node Cosmic Cube built by Seitz and
his colleagues at Caltech, which became operational in 1983
[16]. This pioneering machine employed processor nodes
based on the commercial Intel 8086/8087 microprocessor
family. The Cosmic Cube was applied successfully to a vari-
ety of numerical computation tasks, often yielding signif-
icant speedups compared to conventional computers of
similar cost. It was also the first of a series of experimental
hypercube computers developed at Caltech [17], [18] and
provided the main inspiration for the first generation of
commercial hypercube computers.

In July 1985, Intel delivered the first production hyper-
cube, the Intel Personal Supercomputer, oriPSC, which has
a 80286/80287 CPU as its node processor and up to 128
nodes. Assuming a peak performance of 0.1 million float-
ing-point operations per second (MFLOPS) per node, the
128-node iPSC has a potential or peak throughput of about
12 MFLOPS. (Note that a traditional vector supercomputer
such as the Cray-1 has a peak throughput of 160 MFLOPS).
Two other commercial hypercubes were introduced in 1985:
NCUBE Corporation’s NCUBE/ten and System 14/n from
Ametek (subsequently Symult Systems). The System 14/n
hypercube has up to 256 nodes, each employing an 80286/
80287-based CPU similar to that of the iPSC, and an 80186
microprocessor for communication management. The
NCUBE/ten can accommodate up to 1024 nodes, each based
on a VAX-like 32-bit custom processor with a peak perfor-
mance of around 0.4 MFLOPS. Thus, a fully configured
NCUBE system has a peak throughput of about 400 MFLOPS.
This high performance level is supported by extremely fast
communication rates (both input/output and node-to-
node), making the fully configured NCUBE/ten atrue super-
computer. In 1988, researchers at Sandia National Labo-
ratories using a 1024-node NCUBE/ten were the first to meet
the widely publicized challenges posed by A. Karp and
C.G.Bell todemonstrate the successful application of mas-
sive parallelism to large-scale practical problems in sci-
entific computation [19]-[21]. This work, and that of many
others, demonstrates convincingly that a properly pro-
grammed N-node hypercube can provide linear speedup—
execution speeds that increase in proportion to N—for a
wide range of computation problems.

Several new hypercubes with supercomputing perfor-
mance have been built or announced since 1985, including
the Caltech/JPL Mark 111 [18], the Floating Point Systems T
Series[22], and the Intel iPSC/2[23]. Some of these machines
incorporate pipelined vector processors in their nodes, a
feature of most earlier supercomputers. In some instances,
they also employ special routing circuits to allow direct
communication paths to be established between nonad-
jacent nodes. The second-generation Intel iPSC/2, for
instance, has a vector-processing capability, as well as a cir-

HAYES AND MUDGE: HYPERCUBE SUPERCOMPUTERS

cuit-switching internode communication network to
replace the slower store-and-for vard technique [24]. Peak
performance figures in excess of 1000 MFLOPS (1 GFLOPS)
are cited by the manufacturers o these newer hypercubes.
The new communication hardware has reduced the time
to pass a message between two nodes from a few milli-
seconds to afew microseconds. | 1fact, by effectively reduc-
ing the distance between all pai-s of nodes to a small con-
stant, a programmer can view the system as a pool of
processors with a complete set of node-to-node connec-
tions. As aresult, the requiremer t that the application algo-
rithms have a hypercube-like ccmmunication structure is
diminishing in importance. Furtiermore, it raises the pos-
sibility of implementing a share-3-memory architecture on
a hypercube platform.

A few other recent supercoinputers employ architec-
tures that have been heavily inf uenced by the hypercube
concept. The Connection Machine series manufactured by
Thinking Machines Corporation employs up to 2'® or 65 536
simple processing nodes [25]. Sixteen nodes are placed on
a chip with switching circuity taat allows any node to be
directly connected to any other node on the chip. The 2
chips of the Connection Machine form the nodes of a 12-
dimensional hypercube. The second-generation, CM-2
model of the Connection Mach ne announced in 1987 has
a peak performance target of 2.5 GFLOPS [25]. The Symult
Systems 2010 introduced in 198¢ has up to 256 nodes inter-
connected as a toroidal mesh v/hich, as we will see later,
is closely related to a hypercube [26].

The basic architecture of a hyoercube node processor is
shown in Fig. 2. Itis a self-contained computer with a CPU,

Bidirectional links to other nodes ad external /O

. — N
1 |
— — -~ ¥O Channels
]: Node Bus

Local
Memory

Fig. 2. Architecture of a typical ncde processor.

local memory for programs anc: data, and an input/output
(1/0O) subsystem. Its main distir guishing feature is the set
of bidirectional I/O channels 1hat link the node to its n
immediate neighbors in the hypercube. These channels are
used for interprocessor message passing and are typically
implemented as bit-serial links with direct memory access
(DMA) to the local memories of the nodes being linked. Pro-
cessors not directly connected to one another by I/O links
can communicate via intermediate nodes, which relay mes-
sages between the source and destination nodes. Addi-
tional links may be provided to connect each processor to
a host computer and 1/O deviczas such as secondary (disk)
memories; in some instances ¢l access to the 1/0 system
is via the host computer. The host acts as a general system
supervisor providing such operating system functions as

1831



1/0 management, as well as program editing and compi-
lation facilities.

Communication issues play a central role in the archi-
tecture and performance of hypercubes and, indeed, of all
distributed-memory computers. Hypercubes are typically
configured so that the nodes execute the same application
program on different data sets. Each node’s program and
data are stored in its local memory, so that most compu-
tation is within the individual nodes. When two nodes need
to share information—for example, to exchange results—
the shared data must be inserted in a message which is
transmitted via a series of 1/O transfers, possibly involving
other nodes. The delay required for a node to obtain a data
item in this fashion from one of its immediate neighbors
is perhaps 1000 times the delay incurred when accessing
datain the node’s local memory. Thus great pains are taken
to design hypercube application programs to minimize the
need for message-passing, and to confine unavoidable
message-passing to adjacent or nearly adjacent nodes.

The earliest hypercubes used store-and-forward com-
munication schemes, which required of the order of 1 ms
to transfer a message between adjacent nodes; k separate
transfers or “hops’’ are necessary when source and des-
tination are k links apart. Improvements in the efficiency
of the message-passing software can reduce this delay by
a factor of 10 or so [27]. However, to reduce the delay to a
level comparable to the local memory access time (1 us or
less), hardware routing circuits have been devised. The
Torus routing chip [28] and the Hyperswitch used in the JPL
Mark Il hypercube are examples of these [29].

The routing circuits proposed for hypercubes resemble
crossbar switching networks and provide direct (circuit-
switched) connections between arbitrary pairs of I/O chan-
nels associated with a single node. This permits a message
to pass from source S to destination D without being stored
at intermediate nodes. In effect, a direct high-speed circuit
is established between S and D. Provided they do not con-
tend for the same links, several separate circuits can pass
through the same routing switch. A number of strategies
have been devised for dealing with contention when it
occurs. The ““wormhole’ approach of Dally and Seitz [28],
versions of which are used in iPSC/2 and the Symult Sys-
tems 2010, allows a blocked message to retain control of the
routing circuitry up to the blockage point: It is queued in
the network until the blockage clears. Alternative ‘“adap-
tive”” strategies to the wormhole approach used in con-
junction with the Hyperswitch attempt to find a free path
around a blocked node [29]. Finally, there is a class of rout-
ing strategies that are adaptive only on their first hop as the
message leaves S[30]. These reduce the likelihood of block-
age and simplify deadlock avoidance, a concern with adap-
tive routing [31].

A hypercube computer is managed by an operating sys-
tem (OS) which resides mainly in the host machine. The OS
management functions peculiar to hypercubes include
allocation of subcubes of nodes (smaller hypercubes
formed by asubset of the available nodes) to multiple users,
loading programs into the nodes (often done by a broad-
casting operation), and managing processor-processor and
processor-1/0 communication. Communication functions
such as message storing and forwarding may be assigned
tothe hypercube nodes in the form of a small node-resident
OS kernel. It should be noted that node processes are

1832

inherently asynchronous, so that any necessary synchro-
nization among processes in different nodes must be taken
care of by the OS.

Because of the large numbers of nodes that may be
present, packaging considerations are also very important
in hypercube design in order to keep physical size, power
consumption, and cooling needs within reasonable limits.
The Connection Machine employs simple 1-bit processors
and is therefore able to accommodate 16 node processors
on asingle custom IC. Thirty-two of these chips, their mem-
ories (4K bits per processor), and internode communication
circuitry are placed in a single printed circuit board. Most
commercial hypercube machines employ conventional
32-bit processors with much larger and expandable local
memories. In a more typical case such as the Intel iPSC, the
node consists of one or two small boards with several mega-
bytes of local memory. An intermediate case represented
by the NCUBE/ten has a 7-chip node comprising a custom
32-bit microprocessor chip and six memory chips with a
combined storage capacity of 0.5 MB. Sixty-four nodes can
be placed on a large (16 X 22-in.) board; however, this for-
mat does not allow for memory expansion. Figure 3 shows

L

Fig. 3. 64-node NCUBE/ten processor board.

a 64-node NCUBE/ten processor board, which functions as
a 6-dimensional hypercube.

1Il.  STRUCTURAL PROPERTIES

The graph properties of hypercubes that are relevant to
their use in supercomputers [32], are examined next. An n-
dimensional hypercube graph Q, can be defined recur-
sively as follows:

Q1 = K2
Qn = K2 X Qn—‘\

where K, is the 2-node complete graph, and x denotes the
cartesian product of graphs. This definition implies that Q,
contains many subcubes of smaller dimensions, a property
that may be exploited in several ways. For example, a hyper-
cube Q, can accommodate multiple users simultaneously
by assigning each user a disjoint subcube Q; within Q,,
where k < n. Furthermore, a measure of fault tolerance can

PROCEEDINGS OF THE [EEE, VOL. 77, NO. 12, DECEMBER 1989



be achieved by assigning to users only those subcubes that
exclude known faulty nodes.

Q, contains N = 2" nodes of degree n, and n2"~" edges.
Thus, as the number of nodes N is increased to improve
performance, the connection requirements of each node
increase at a rate proportional to n = log, N. This implies
that practical limitations on the number of links per node
can be met while allowance is made for the increased com-
munication needs of a larger hypercube. Each node of Q,
is at distance one from n other nodes. The maximum inter-
node distance or diameter of Q, is n, which therefore
defines the worst-case communication delay. The average
internode distance is (n2" /(2" — 1), which rapidly
approaches n/2 as n is increased.

The nodes of Q,, may easily be labeled with n-bitaddresses
in such away that nodes adjacentin the ith dimension differ
only in the ith address bit (see Fig. 1). The resulting set of
2" addresses {00..0,00..1, - - -, 11..1} facilitate the imple-
mentation of key communication algorithms, including
node-to-node routing and broadcasting from one node to
the entire hypercube. Two basic programs for this purpose
appearin Fig. 4. A copy of each is assumed to reside in every
node of the hypercube as part of its resident OS. The pro-
gram is executed whenever a message is generated locally
or is received from another node for routing or broad-
casting. The same basic communication algorithms are also
implemented in the circuit-switching hardware discussed
in Section Il.

Figure 4(a) gives the basic node-to-node routing algo-
rithm ROUTE which always selects a minimum-length path

procedure ROUTE;

begin
for next message from s,y s,,_5...50 to d,,_; d,,_>...do do
begin
Tnot Tno2T0 1= (301 @ dno 182 @ dn_1)...(s0 D do);
for { := 0 to n-} do
if z; = 1 then begin
send message to i-th neighbor; exit;
end:
end;
end.

procedure BROADCAST;
begin
if the current node is the source then C := 11...1
else receive message and control word C = ¢, _j¢,,_3...¢0}
fori:=0ton—1do
if c; = 1 then begin
¢ =0
send message and C to i-th neighbor;
end,;
end.

(b)

Fig. 4. Hypercube communication algorithms. (a) Node-to-
node routing. (b) Broadcasting.

between the source node S = s,_+5,_, * * * 5o and the des-
tination node D = d,_4d,,_, * - * dp. ROUTE first computes
X =S @ D where @ denotes the bitwise EXCLUSIVE-OR
operation. It then scans X in a fixed direction, say, left to
right. f ROUTE encounters some x; = 1, it transmits the cur-
rent message to its immediate neighbor along the ith
dimension of Q, (its ith neighbor). If X = 00..0, then the
current node must also be the destination, and the message
is retained for processing. By transmitting the message to
a node whose ith address bit is 1 whenever it encounters

HAYES AND MUDGE: HYPERCUBE SUPERCOMPUTERS

x; = 1, ROUTE ensures that the ROUTE program in al! sub-
sequent nodes will find x; = 0. Hence the message is always
sent closer to the destination. It therefore travels the min-
imum possible distance from S to D, which is the number
of ones in S @ D. An alternative routing algorithm devel-
oped by Valiant[33} routes each message toarandomly cho-
sen node; from there the messag;e is forwarded to its orig-
inally intended destination. The randomization assures that
message congestion at nodes will be dispersed. Unfortu-
nately, Valiant’s router does nct perform as well as the
straightforward algorithm in many routine parallel pro-
cessing tasks, and its more :omplex implementation
requirements have discouraged its use.

A basic broadcasting algorithm, BROADCAST, is pre-
sented in Fig. 4(b). Assuming that each node can transmit
the message to only one neighbor atatime, and thatasingle
message transmission takes time 7, BROADCAST allows the
message to be sent to all nodes intime n7, which is the min-
imum possible. A control word C is transmitted along with
the message, and serves to tell each receiving node the
dimensions along which it shou d retransmit the message.
The first node S transmits the mnessage and (and C) to a
neighbor T in the first time per od. In the second period,
both S and T retransmit the message to two more nodes,
and so on. Hence the number >f copies of the messages
being transmitted in successive time periods is 1, 2, 4,
-+ -, 271 50 that all nodes are reached within n periods.
Faster broadcasting can be achieved if a node transmits sev-
eral copies of the message simultaneously.

Hypercubes have a very regular structure, which has sev-
eral practical implications. As noted in Section [, they are
homogeneous in the sense that the system structure looks
the same from every node. In graph theoretic terms [34], Q,
is symmetric, meaning that every pair of nodes or lines can
be interchanged without altering the graph structure. This
property, combined with the fact that Q, contains many
easily identified subcubes of dimensions smaller than n,
leads to the following conclusinns.

1) A program can readily be cesigned to run unchanged
on a hypercube of any dimension k = 0 by making k a
parameter of the program. Thus program developmentcan
be conducted onasmall subcubz, e.g., onewith n = 2, while
production runs can be executad by a farger hypercube.

2) Alarge hypercube computer can be efficiently shared
by multiple users, each of whor1 is assigned a disjoint sub-
cube by the OS. Such ascheme simplemented by the AXIS
operating system of the NCUBE/ten, which allows a user to
specify the dimension k of a desired hypercube. AXIS then
allocates a Q, from among the zvailable free nodes, if it can
find one. Several efficient methods for handling arbitrary
sets of subcube allocation requests have recently been
developed [35]. The subcube C, of Q, can be viewed as a
logical entity which can be relocated anywhere in Q, by
EXCLUSIVE-ORing the address of each node in Q, with the
address of the node in Q, chosen as the logical origin.
Broadcasting, and message trar sfers in general, can be per-
formed using the logical node addresses. This simplifies
many message transfer algorithms.

Hypercubes have many attra:tive and useful embedding
properties, some of which have been studied by graph the-
orists for more than 20 years [26]. An (isomorphic) embed-
ding of G into G’ is a one-to-orie mapping ¢ of nodes of G
onto nodes of G’, such that if (v, v) is an edge of G, (¢(u),

1833



d(v) is an edge of G'. Gis termed cubical if it has an embed-
ding in the hypercube Q,, for some n. Among the useful
graphs that are cubical are trees (cycle-free graphs) and
meshes of any dimension. The latter result is especially
important since many large-scale numerical problems have
data structures defined on d-dimensional meshes. Their
solution—for example, by relaxation methods—requires
efficient communication between neighboring nodes on
the mesh. Thus, to solve such mesh-oriented problems on
a massively parallel computer, it is very desirable that
meshes be isomorphically embeddable into the structure
of the host computer. This is underscored by the fact that
at least one hypercube manufacturer has also introduced
a product with a mesh rather than a hypercube intercon-
nection structure [26].

Figure 5 illustrates how a 2-dimensional 4 X 4 mesh can
be embedded in Q,; the labels assigned to the mesh nodes

o A o)
Oy

Fig. 5. A4 x 4 mesh labeled for isomorphic embedding in
Q..

correspond to the hypercube node labelsin Fig. 1. Note that
Q, can also accommodate a toroidal 4 X 4 mesh in which
the edge nodes are connected in end-around fashion, as
indicated by the dotted lines in Fig. 5. In general, ad-dimen-
sional nontoroidal k; X k, X - -+ X k; mesh M can be
embedded in a hypercube Q, of dimension n = %, [log,
k;]. If the dimension n of the available hypercube com-
puter is too small, a mesh problem can often be partitioned
efficiently into smaller mesh problems, each of which can
be solved separately on the hypercube. An embedding of
the k; X k; X - -+ X ky mesh M into Q, can easily be
obtained by labeling the nodes of M so that the sequence
of sublabels assigned to each dimension forms a Gray code
[36]. For example, the nodes of the 4 X 4 mesh in Fig. 5 have
labels a;ayb,by in which a,ay and b,b, assume the values G
= 00,01, 11, 10 along the vertical and horizontal dimensions
of the mesh; G is a 2-bit reflected Gray code.

IV. SOFTWARE

The emergence of the commercial hypercube computer
has demonstrated the feasibility of constructing low-cost
massively parallel machines. The focus of research can now

1834

be expected to shift to the issue of how these machines can
be programmed effectively. Indeed, a recent study con-
cludes that the lack of appropriate parallel programming
languages and software development tools is the single big-
gestimpediment to the widespread use of parallel machines
[37]. The operating system is also a major factor, as memory
management, interprocess communication and other OS
functions are critical to overall system operation. Three
major software issues must be considered: the operating
system used for developing application programs; the run-
time operating system in the hypercube nodes, and the set
of application programming languages to be used.

High-order parallel programming languages and support
tools are essential if users of parallel systems are to develop
machine-independent concurrent software [38]. Such soft-
ware will hasten the day when reusable software becomes
a reality for parallel machines, as it now is for conventional
uniprocessors. The programming of hypercubes is nor-
mally done by writing a separate program to run on each
processor. The programs communicate by low-level mes-
sage-passing operations provided by the OS and available
to the programmer through extensions to a sequential lan-
guage such as C or FORTRAN. Typically, these programs are
copies of a single program. The distinct copies will execute
correctly regardless of their location in the hypercube. This
style of programming is referred to as single code multiple
data (SCMD) or single program multiple data (SPMD).

Two major problems with the SCMD style of program-
ming are the lack of type checking in internode commu-
nications and the machine dependence of the code. These
problems can be solved by using a suitable parallel lan-
guage, that is, one whose units of concurrency are distrib-
uted across the processors and executed simultaneously.
To be effective, such languages should be able to perform
type checking across processor boundaries, provide lan-
guage constructs forinterprocess communications thatcan
also function across processor boundaries, allow data shar-
ing between processes to be specified at the language level,
and provide for synchronous creation and termination of
processes within a program. Languages that meet these cri-
teria are discussed in [39]-[42].

UNIX provides an attractive OS environment for software
development on both sequential and parallel machines. As
aresult, itis supported (in several different versions) by most
of the hypercube manufacturers. The NCUBE/ten, for exam-
ple, has a UNIX-like operating system called AXIS [9]. It pro-
vides the normal UNIX utilities for editing, debugging, and
resource management which treat most system resources
as files. The NCUBE/ten incorporates up to eight /0 sub-
systems to meet the high /O bandwidth requirements of
asupercomputer. These are organized, under AXIS, as one
distributed file system to avoid having to deal with multiple
separate file systems. AXIS manages a hypercube as adevice
file that can be opened, closed, and so forth, as if it were
anormalfile. It permits users to allocate subcubes that have
the approprite dimension for their application. Thus, one
ortwo users with large problems or several users with small
problems may share the hypercube. This flexibility greatly
increases the system efficiency and gives a hypercube
supercomputer a significant advantage over conventional
supercomputers. Partitioning the main hypercube into
subcubes is simplified in that each subcube is easily iso-
lated logically from all other subcubes. A smalt OS nucleus

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 12, DECEMBER 1989



called VERTEX is resident in each of the NCUBE/ten nodes.
Its primary function is to provide communication between
the nodes. [t achieves this by, among other facilities, send
and receive operations that transfer messages between any
two nodes in the hypercube, using the ROUTE algorithm
of Fig. 4(a), and by a “‘whoami’’ operation that atlows a pro-
gram to determine which logical node it is executing on and
which 1/O processor it is connected to.

We conclude this section with a sample SCMD program
that calculates the maximum element of a vector of num-
bers v. More formally, the program calculates,

S = max v[i}

1=izK

where K = n - 2%, n is the numbar of elements of v in each
node of the cube, and dim is the dimension of the cube.
Alisting of the program, which is written in a parallel exten-
sion of the C language, appears ir: Fig. 6. This particular pro-
gramming language is NCUBE's version of C, but other
hypercube manufacturers use s:milar extensions to C (cf.
Intel [43]). The extensions to C include internode send and
receive operations implemented as function calls nwrite
and nread, respectively; and the whoami operation imple-
mented by the function called ‘whoami. These functions
are part of the OS resident in the hypercube nodes. We
assume that a copy of this program has been loaded into
each of the nodes of a particular s ubcube that has been allo-

00L /* NODE PROGRAM TO CALCULATE THE MAXIMUM OF A VECTOR v

002

003 pn caller’s logical processor number in subcube

004 proc process number in node

005 host node on Host for cube communication

006 dim dimension of allocated cube */
007

008

009 whoami (&pn, &proc, &¢host, &dim);

010

011

012 /* Receive vector of length n from the host; VECLEN is the
013 possible length of the vector. (4 bytes per vector element) */
014

015 cf = 0;

016 type = DATA;

017 n = (nread{{char *)v,VECLEN*4, ¢host, &type, &cf)/4);

018

019 /* Find m, the local maximum of v in this node */

020

021 m = MINF;

022 for (i = 0 ; 1 < n ; ++i) if (v[i] > m) m = v(i];

023

024 for (i =dim ; i > 0 ; --i) {

025

026 /* Execute once for each axis of the hypercube */

027

028 ’ if (pn < power(2,i)) ({

029

030 /* If this node is in the active part of the collapsed cube,
031 do the computation below, otherwise the node is done.
032 npn is the neighbor of pn on the i-th axis */
033

034 type = MAX;

035 npn = pn“power (2, (i-1));

036 if (npn < pn)

037

038 /* 1f neighbor’s number is less, send the local maximum; otherwise
039 receive it and update its value. /*
040

041 nwrite ( (char *)&m, 4, npn, type, &cf);

042 else {(

043 nread( (char *)&rm, 4, &npn, &type, &cf);

044 if {(rm > m) m = rm;

045 }

046 }

047 }

048

049 /* send the final result back to the host */

050

051 if (pn == 0) {

052 type = RESULT;

053 nwrite ((char *)&m, 4, host, type, &cf);

054 }

Fig. 6. SCMD program to find the maximum element of a vector.

HAYES AND MUDGE: HYPERCUBE SUPERCOMPUTERS

1835



cated to this particular job. Execution of the program may
be summarized as follows: It reads in equal numbers of the
elements of v into each node, forms local maxima of these
numbers, and then selects, inturn, the largest of these local
maxima along successive dimensions of the hypercube. The
selection process collapses the active part of the compu-
tation into smaller and smaller cubes.

The call to whoami on line 009 returns the calling pro-
gram’s logical node number (pn), the node on the host
board used for I/O communications (host), and the order
of the allocated subcube (dim). The call to nread on line
017 reads in an n-element slice of the vector v from the
host. The for loop on line 0RR finds the maximum element
of the slice of v in the node (m is initially set to —o on line
021). Thisis donein parallel in each node. During this phase
of the computation, all 2™ nodes are doing useful work
and the utilization of the allocated cube approaches 100%.
2%m -1 new maxima are formed by comparing pairs of local
maxima in nodes that areimmediate neighbors in the dimth
dimension. The new maxima are now confined to a (dim
— T)-dimensional hypercube; in effect, the active cube is
collapsed to half its initial size. This process of collapsing
the active cube by half and selecting a new smaller set of
maxima is repeated until the maximum of all the elements
of vappear in logical node 0. The selection of the maximum
among the nodes simulates a tree of comparators. Figure
7 illustrates this for a 3-cube.

dimensions
3

0O-cube
TdJmension 1

1-cube
rd)mension 2

2-cube

GODDES D D

Fig. 7. Comparator tree to find the maximum.

The for loop that begins on line 024 starts at the highest
dimension (dim) and finds the larger of each pair of local
maxima in nodes that are adjacent in the highest dimen-
sion. It repeats this, stepping through all the dimensions.
Line 028 selects the nodes (pns) in the part of the hyper-
cube that remains active after collapsing along the (i + 1)st
dimension. The neighboring nodes (npns) of the pns are
those whose addresses differ in the ith bit position. Their
addresses are calculated in the line 038 by performing the
EXCLUSIVE-OR operation () on pn and 2" ~ 7. Line 036 par-
titions the active nodes into two sets: those that are to
receive local maxima (line 043) and those that send them
(line 041). Line 044 finds the larger of the received value

1836

and the local maxima already present in the node. Those
nodes that send will not be active in the next iteration of
the loop. Line 083 transmits the result from node 0 to the
host.

V. APPLICATIONS

Figure 8 shows a representative list of applications of
hypercube computers. This is by no means an exhaustive
list, but it does illustrate the wide range of applications to

Mathematics
Computational geometry
Prime number generation
Physics
Particle transport
Lattice gauge theory
Molecular dynamics simulation
Chemistry
Polymer simulation
Chemical reaction dynamics
Geotogy
Seismic data processing
Operations research
Resource allocation
Anrtificial intelligence
Game playing
Generalized search
Computer-aided design for VLS
Placement, layout and routing
Circuit simulation
Image processing and computer vision
Image restoration
Image encoding/decoding
Object recognition
Other
Airfoil simulation
Electromagnetic scattering
Robot arm control algorithms
Databases and file systems
Sonting

Fig. 8. List of applications.

which hypercubes are being applied. For a detailed picture
of these applications, the reader is referred to [44], [45], the
book by Fox et al. [46], and the book by Reed and Fujimoto
[47]. Although the number of applications has grown rap-
idly, they are predominantly in the area of scientific com-
puting in which the behavior of a physical system is being
analyzed. For the majority of these applications, the par-
allelism can be determined at compile-time and depends
on a simple partitioning of the problem domain which is
often a physical space. For example, in the particle trans-
port problems of photons in a fusion plasma[48], the under-
lying algorithm is a Monte Carlo method which divides
physical space into equal subregions, then simulates par-
ticle behavior for each space independently, and finally
averages the results obtained from the separate Monte
Carloexperiments. Similarly, in the case of many image pro-
cessing algorithms, as we will see below, the image is par-
titioned into subimages of equal size that are assigned to
separate processors.

In contrast to the applications with compile-time paral-
lelism, hypercubes are also beginning to be used in appli-
cations where the degree of parallelism cannot be deter-
mined before the programisrun,and where, consequently,
load balancing of work among the processors at run-time
becomes an issue. Examples from Fig. 8 are database appli-
cations, where addition and deletion of records has the
potential to cause some processors to be underutilized, and
resource allocation algorithms, which are usually solved

PROCEEDINGS OF THE [EEE, VOL. 77, NO. 12, DECEMBER 1989



using branch-and-bound algorithms, as will also be exam-
ined further. These algorithms are particularly ““dynamic”
in their behavior because they spawn work in an unpre-
dictable fashion during their execution.

In the remainder of this section we review in detail two
applications that typify both ends of the spectrum: obvious
compile-time parallelism and dynamic or run-time paral-
lelism. The first is an image processing application which
has a large degree of natural parallelism. By making use of
the embedding ideas of Section 111, it can be implemented
on a hypercube in a fairly straightforward fashion. The sec-
ond is the 0-1 integer linear programming (ILP) problem.
This is one of the simplest examples of a large class of algo-
rithms called branch-and-bound methods, which are used
inartificial intelligence and operations research. Unlike the
majority of applications of hypercubes, in which the work
of each node can be scheduled a priori by the programmer,
branch-and-bound programs schedule processes dynam-
ically at run-time. At first sight, this would seem to make
them inappropriate for hypercubes because of the com-
munications overhead associated with dynamic schedul-
ing. Like the implementation of chess on a hypercube
reported in [49], the branch-and-bound application shows
that many problems hitherto considered unparallelizable
have, in fact, a substantial content of exploitable parallel-
ism.

A. Image Processing

The term image processing covers an important class of
techniques that include the encoding/decoding of images
for transmission, the enhancement and restoration of noisy
images, the extraction of features such as edges, and the
segmentation of images for the purposes of image under-
standing [50]. An image is a 2-dimensional mesh of elements
(pixels) that can take on a finite number of values (typically
256). These values, or gray-levels, represent the light inten-
sity at each point in the image.

Awidely used image-processing techniqueis to convolve
the image with a finite impulse response (FIR) function.
Depending on the particular FIR function, this operation
can be used for edge detection, template matching, noise
removal, and general filtering. The FIR function is defined
as an m X m matrix K(e, 8) of constant coefficients referred
to as the kernel. The kernel is moved across the image in
one-pixel steps to implement the convolution function. At
each step the pixel P, (i, j) coinciding with the center of the
kernel is replaced by P, j), such that,

a=|mi2] p={mi2]|
Poull, J) = e S| e o) Pinli, j) Kle, B)

Atypical example of an image-processing algorithm involv-
ing the convolution of the image with FIR functions is the
Sobel edge detection algorithm [51]. The image is con-
volved with the each of the two FIR kernels shown in Fig.
9 (an integer approximation to the exact kernels is shown).
The results of the convolution are the two images e, and
e, where e,(i, /) is an M X M array of x-direction edge (gra-
dient) strengths, and e,(i, j) is an M x M mesh of y-direction
edge (gradient) strengths. These two arrays are then com-
bined to form a combined edge strength array, £, and an
edge direction array, © where

El, j) = Ne} + €]

HAYES AND MUDGE: HYPERCUBE SUPERCOMPUTERS

—

| 0 | | 2 |

2 0 2 0 0 0

Ll 0 i -1 2 1
A. ay

Fig. 9. The Sobel edge detector kernels.

and

00, j) = tan"" | i3—’) -I
€y 2

it can be seen from these equations that equal-size areas
of the image require equal amounts of processing. There-
fore, the natural approach to executing these algorithms on
hypercubes is to partition the image into subimages of equal
size and assign each subimage 0 a separate node proces-
sor. The subimages can be procassed in parallel, using the
mesh embedding technique of ection Il to map adjacent
subimages to adjacent nodes of the hypercube. Figure 10

Image of A7 x A fixels

00 Ul/ 11 I

o1 Assign this subimage
to node 0111

[ Data required
] by A

Subimage of ﬂfl‘” pixels

00

( Subimage
innode A [ |

Fig. 10. Partitioning the image.

illustrates this for an image of M X M pixels and a 4-cube;
here the image is partitioned into 16 equal subimages.

In general, convolving with an FIR function is imple-
mented in the SCMD mode of Saction IV. The only potential
contributor to inefficiency is the communication overhead
that results from the need to exchange data around the
edges of each subimage to allow the edge pixels to be con-
volved with the kernel. This is also illustrated in Fig. 10,
which shows a subimage in processor A and the data
(shaded) that have to be move1 from adjacent processors.
The number of pixels that has to be transferred is roughly
IMmIN if nis even, and 3MmIN2N if n is odd. (Recall that
m X mis the size of the kerne , M X MIN is the size of the
subimage, and N = 2" is the number of processors). The
communication time necessaty to move the pixels is pro-
portional to their number. Hovsever, as we have seen, com-
munications are often perforried as DMA operations and
can be completely overlapped with processing. Of course,
forlarge kernels and small subi nages a pointcan bereached
whereoverlapisimpossible and communication times start

1837



to dominate. This highlights the importance of having suf-
ficiently large problems for a particular size of hypercube
if its efficiency is to be maintained [52]. Results reported in
[53] show that convolving with a simple FIR kernel can easily
be performed at video frame rates (thirty 512 X 512 images
per second).

It can be shown that if the discrete Fourier transform and
its inverse are implemented by the FFT algorithm and if m
is greater than about 10 [54), then it is more efficient to per-
form convolution in the frequency domain for a 512 x 512
image. The hypercube network is well suited to efficient
implementation of the FFT, with communication occurring
between pairs of adjacent nodes [55]. The data layout shown
in Fig. 10 is also appropriate for calculating the FFTs, and
for computing their product in the frequency domain. The
FFT and its inverse require data to be communicated
between subcubes, that is, between adjacent regions in Fig.
10. These, of course, are in adjacent processors.

B. Branch-and-Bound Algorithms

Our second representative application area for hyper-
cubes concerns problems for which there exists no com-
putationally efficient ““direct’” solution. A solution is often
found via a heuristic search through a large solution space.
Unguided search, however, can easily become inefficient
as many of these problems are at least NP-complete. Several
techniques have been developed to guide the search and
improve its average efficiency. The most general of these
techniques is the branch-and-bound (B&B) algorithm [56],
which has been used to solve some well-known problems,
including the traveling salesman problem [57], the knap-
sack problem [58], and many of the heuristic search algo-
rithms in artificial intelligence such as A*, AO*, and alpha-
beta [59].

The branching action of a B&B algorithm is performed by
building a search tree, called a B&B tree, over the problem
space of interest. The root of the B&B tree represents the
complete problem space, and children nodes represent
subspaces. The branching process proceeds from the root
to the leaves of the tree, systematically partitioning sub-
spaces into smaller ones. The leaf nodes represent sub-
spaces that are small enough to be exhaustively searched
for solutions. A subproblem P; can be characterized by the
value of an objective function f, which is defined as the value
of the best solution that can be obtained from P,. This value
is not known, however, until the subtree rooted at P;is com-
pletely expanded. Instead another function h, referred to
as the lower bound function, is used as an estimate of f. In
general, b is a heuristic function thatis much easier to com-
pute than f.

A B&B algorithm consists of four major procedures: 1)
selection, 2) branching, 3) elimination, and 4) termination
test. The selection procedure selects a subproblem from
the set of subproblems that have been generated but not
yetexamined (the active subproblems). The selection is per-
formed according to the heuristic selection function h
which determines the order in which the subproblems are
selected for expansion. A commonly used heuristic is best-
first search, in which h is a lower bound estimate of the
objective function f. Subproblems with smaller lower
bounds are selected first. The branching procedure exam-

1838

ines the currently selected subproblem and uses problem-
specific methods to break it into smaller-sized subprob-
lems. The elimination step examines these newly created
subproblems and deletes the ones that cannot lead to bet-
ter solutions than those already found. To accomplish this,
a special subproblem referred to as the incumbent is used
to store the best feasible solution discovered during the
search.Asubproblemisdeletedifits lower bound is greater
than or equal to that of the incumbent. Finally, the ter-
mination test procedure eliminates a new subproblem that
cannot lead to feasible solutions. Again, problem-specific
techniques are used to accomplish this.

We now describe a specific problem that uses the B&B
algorithm, viz., the 0-1 [LP problem. This is an optimization
problem in which it is desired to minimize the value of a
linear objective function f(x;, x5, * - * , X,,) subject to a set
of constraints. The variables (xq, x», - - -, x,,), can take only
the values 0 or 1. The problem can be more formally stated
as follows:

n
Minimize f = }ﬂ CiX;
s

subject to the constraints

n
2 a,x

P el

x; € {0, 1}

zb, i=12"--,m
j=12--,n

It can be assumed, with no loss of generality, that the coef-
ficients ¢, j=1,2,---,nare nonnegative. The solution
method involves systematically assigning zeros and ones
to some of the x; variables to obtain subproblems. A sub-
problem which has the smallest lower bound is selected
from the list of active subproblems. An unassigned variable
is picked and is assigned the values 0 and 1 to create two
new subproblems. Each subproblem is evaluated and, if it
represents a feasible solution and its lower bound is less
than that of the incumbent, then it becomes the new incum-
bent. Furthermore, all subproblems on the list with lower
bounds greater than the new incumbent are deleted from
thelist. If the subproblem cannot lead to a feasible solution
itis deleted. Finally, the subproblem is inserted back on the
listif it is not presently feasible and its lower bound is less
than that of the incumbent. The algorithm continues by
selecting another subproblem from the list. The algorithm
terminates when the list becomes empty.

We consider two parallel implementations of the fore-
going B&B algorithm on hypercube multiprocessors. The
first implementation, referred to as the Central List (CL)
algorithm, consists of two major components: amaster pro-
cess which runs on the host and N slave processes which
run on the nodes of the hypercube. The master process
maintains the list of active subproblems and the incum-
bent, selects N subproblems from the list, and assigns one
subproblem to each slave process. The N subproblems
selected have the best bounds among the active subprob-
fems. Each slave process then expands its subproblem, gen-
erates children subproblems and calculates their lower
bounds. It also performs the lower bound, feasibility, and
termination tests on the subproblems it generates. The
results are then sent back to the master process, which

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 12, DECEMBER 1989



inserts them on the list. The algorithm terminates when the
list of active subproblems becomes empty and all the slave
processes are idle.

The CL algorithm has the advantage of expanding sub-
problems whose bounds are the best globally. This is
advantageous because subproblems that have smaller
lower bounds are more likely to lead to solutions than oth-
ers that have larger lower bounds. The algorithm, however,
has some serious disadvantages. It requires two commu-
nication messages for each subproblem expansion. The first
is required to send the subproblem from the host to the
node for expansion. The second is needed to carry the newly
created subproblems from the node to the host. Com-
munication with the host becomes a bottleneck that
reduces the performance of the algorithm.

The second B&B implementation, known as the Distrib-
uted List (DL) algorithm, attempts to put the resources of
the hypercube to better use that the CL algorithm by dis-
tributing the list of active subproblems and a copy of the
incumbent across the processing nodes. It employs N + 1
processes, each maintaining its own subset of the list. A
supervisor process initiates the computation by generating
N subproblems and assigning one to each of the remaining
N processes. Each process then expands subproblems from
its local list. It also performs the lower bound test, the fea-
sibility and termination tests, and inserts the results back
on its local list.

In ourimplementation on an NCUBE/ten [60], [61] the host
runs the supervisor process while each of the N processing
nodes run one of the other processes. A mechanism is
employed by which the load can be balanced and the sub-
problemsdistributed across the processes. When a process
becomes idle it requests subproblems from neighboring
processes in the system. The process that receives the
request examines its own list of active subproblems and
either sends a portion of it to the requesting process or den-
ies the request if its own list is too small to divide. In our
implementation, a processor requests subproblems from
one of its neighbors in the hypercube. It sends one half of
its subproblems to an idle processor requesting subprob-
lems.

Because the DL algorithm maintains multiple copies of
the incumbent, processes can find feasible solutions inde-
pendently and update their own incumbents. In the DL
algorithm, once an incumbent is updated, its new value is
broadcasted to all other processes. Figure 11 shows the

- CL
-~ DL
64

16

SPEEDUP

1 4 16 64
PROCESSORS

Fig. 11. Speedup of the CL and DL algorithms on the
NCUBE/ten.

HAYES AND MUDGE: HYPERCUBE SUPERCOMPUTERS

speedup measured for the two algorithms for various
hypercube sizes. In the CL algo-ithm, the speedup is rea-
sonable for up to 16 processors. Little is gained by increas-
ing the number of processors beyond that. This can be
attributed to host-to-node communication overhead which
increases as the cube size increases, and to load imbalance
resulting from communication celays. The performance of
the DL algorithms shows that ¢ distributed-list approach
has better performance than the CL algorithm. This is
expected since there is no bott eneck in communication;
the communication bandwidth of the hypercube is utilized
more efficiently. The performan::e of the two algorithms on
a 64-process hypercube is compared to the performance of
the corresponding serial algorithm on the VAX 11/780 and
the IBM 3090 (single processor) in Fig. 12.

EXECUTION “'IME (SEC)

N
8
182.14

VAX 1BM 3091} cL DL
11/780 NCUBE/ten

Fig. 12. Execution time for various systems.

VI. DiscussionN

Aswe have seen, hypercube v ultiprocessors are the real-
ization of a concept that has been studied from a theoretical
viewpoint for nearly 30 years. Th2y represent one of the first
applications of massive parallelism to commercial com-
puters. Most of the current hype rcubes can attain peak per-
formance levels approaching those of traditional vector
supercomputers. Success in -eaching these levels for
important practical applications has demonstrated not only
the viability of hypercube super :omputers, but also the fea-
sibility of massively parallel distributed-memory com-
puters, in general. [n particuler, the assumptions under-
lying Amdahl’s law' which places severe limits on the
achievable speedup due to paralielism, are now seen as not
applying to hypercube-class machines as they do to con-
ventional vector architectures 52].

Nevertheless, several factors still make it difficult to
achieve supercomputing perfo-mance with current hyper-
cubes, including the small memory capacity and I/O band-
width available in many of these machines. Mostimportant,
however, is the different style of programming required for
hypercubes and other distributed-memory machines. It is
not possible now to take an ol 1 sequential program (a so-
called “dusty deck’”) and execute it directly on a hypercube
computer. Such programs must be restructured, often

'Amdahl’s law states that the spe 2dup S of an n-processor system
is n/(1 + (n — 1)f), where fdenotes :he fraction of nonparallelizible
operations. Thus, no matter how large n becomes, $ can never
exceed 1/f.

1839



extensively, in order to achieve reasonable speedups. There
are presently no “‘parallelizing’”’ compilers or the like for
automatic program restructuring, comparable to the vec-
torizing tools available for pipelined supercomputers. The
design of automatic parallelizers for hypercubes, now in
the early stages of research, is likely to provide a major
impetus to the use of hypercube computers outside the sci-
entific and research community, which accounts for most
current hypercube usage. In addition, more user-friendly
program development environments, standards for par-
allel programming languages and operating systems, and
shareable software libraries are all likely to have a major
positive influence on the use of these machines.

The rapid technological developments in VLS| that made
hypercube computers feasible in the first place can be
expected to continue to reshape these machines and lead
to further improvements in their performance/cost ratio.
New IC technologies will undoubtedly allow more pow-
erful processors, larger memories, and more sophisticated
interconnection techniques to be incorporated into future
hypercubes. The most profound changes in the architec-
ture of these machines seem likely to occur in their inter-
connection technology. The introduction of fast node-to-
node routing circuits makes a hypercube computer seem
to a programmer like a completely connected system in
which each node is directly connected to all others, i.e., all
nodes are neighbors. In such an environment, essentially
any application graph can be embedded efficiently into the
computer provided a sufficient number of nodes are avail-
able. This development is likely to expand the range of
applications that can use these machines and to simplify
their programming. If this occurs, then the hypercube will
appear as merely the internal skeleton of an extremely gen-
eral and flexible computer of essentially unlimited poten-
tial.

REFERENCES

[11 K. Hwang, ““Advanced parallel processing with supercom-
puter architectures,” in Proc. IEEE, pp. 1348-1379, Oct. 1987.

2] Intel Scientific Computers. iPSC System Overview. Beaver-
ton, Oregon, 1986.

{3] P.}J. Denning, “Parallel computing and its evolution,” Com-
munications of the ACM, vol. 29, pp. 1163-1167, Dec. 1986.

[4] Sequent Computer Systems, Inc. Balance Technology Sum-
mary. Beaverton, OR 97006-6063, 1984.

{5] Encore Computer Corporation. Multimax Technical Sum-
mary, rev. ed. Marlboro, MA, May 1985.

{6] W. Crowther et al., “’Performance measurements on a 128-
node Butterfly parailel processor,” in Proc. 1985 Int. Conf. on
Parallel Processing, pp. 531-540, Aug. 1985.

[7]1 G.F. Pfister etal., “The IBM research parallel processor pro-
totype (RP3): introduction and architecture,” in Proc. 7985 Int.
Conf. on Parallel Processing, pp. 764-771, Aug. 1985.

[8] H.]. Siegel, Interconnection Networks for Large-Scale Parallel
Processing: Theory and Case Studies. Lexington, MA: Lexing-
ton Books, 1985.

9] J.P.Hayes, T. N. Mudge, Q. F. Stout, S. Colley, and ). Palmer.
A microprocessor-based hypercube supercomputer,” IEEE
MICRO, pp. 6-17, Oct. 1986.

[10] J. S. Squire and S. M. Palais. “Physical and logical design of
a highly parallel computer,” Department of Electrical Engi-
neering, University of Michigan, Ann Arbor, Ml, Technical
Report, Oct. 1962.

[11] —, “Programming and design considerations for a highly
parallel computer,” in Proc. Spring Joint Computer Conf., pp.
395-400, 1963.

1840

(12]

(13]

(14]

[15]

[16]

(7]

[18]

{19)

[20]

[21]

[22]

[23)

[24]

{25]

[26]
27}

[28]

[29]

[30]

31]

[32}

{33}

[34]
[35]

[36]
37)
[38]

39]

[40]

W. Millard, “Hyperdimensional uP collection seen function-
ing as mainframe,”” Djgital Design, vol. 5, Nov. 1975.

H. Sullivan and T. R. Bashkow, “‘A large scale, homogeneous,
fully distributed parallel machine |, in Proc. Computer Archi-
tecture Symp., pp. 105-117, 1977.

H. Sullivan, T. R. Bashkow, and D. Klappholz, ‘A large scale,
homogeneous, fully distributed parallel machine 1, in Proc.
Computer Architecture Symp., pp. 118-124, 1977.

M. C. Pease, “The indirect binary n-cube microprocessor
array,” IEEE Trans. Computers, vol. C-26, pp. 458-473, May
1977.

C. L. Seitz, “The Cosmic Cube,” Communications ACM, vol.
28, pp. 22-33, Jan. 1985.

J. Tuazon, J. Peterson, M. Pniel, and D. Liderman, ‘“Caltech/
JPL Mark Il hypercube concurrent processor,” in Proc. 1985
Int. Conf. on Parallel Processing, pp. 666-671, Aug. 1985.

J. Peterson, J. Tuazon, D. Liderman, and M. Pniel, “The Mark
11l hypercube-ensemble concurrent computer,” in Proc. 1985
Int. Conf. on Parallel Processing, pp. 71-73, Aug. 1985.

A. Karp, “What price multiplicity?”” Communications ACM,
vol. 30, pp. 7-9, Jan. 1986.

G.R.Montry, J. L. Gustafson, and R. E. Benner, ’Development
of parallel methods for a 1024-processor hypercube,” SIAM
J. Scientific and Statistical Computing, vol. 9, pp. 1-32, July
1988.

J. Dongarra, A. Karp, and K. Kennedy, “Winners achieve
speedup of 400,” IEEE Software, pp. 1-5, May 1988.

J. Gustavson et al., “The architecture of a homogeneous mul-
tiprocessor,” in Proc. 1986 Int. Conf. on Parallel Processing,
pp. 649-652, Aug. 1986.

Intel Scientific Computers. Intel iPSC/2. Beaverton, OR 97006,
1988.

T. H. Dunigan. Performance of a second-generation hyper-
cube. Oak Ridge National Lab., Oak Ridge, TN, Technical
Report ORNL/TM-10881, Nov. 1988.

Thinking Machines Corp., Connection Machine Model CM-2
Technical Summary. Technical Report HA87-4, April 1987.
Ametek Corp. Series 2070. Monrovia, CA, 1988.
T.N.Mudge, G. D. Buzzard, and T. S. Abdel-Rahman, “A high
performance operating system for the NCUBE,” in Hyper-
cube Multiprocessors 1987, M. T. Heath, ed. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, pp. 90-99,
1987.

W. ). Dally and C. L. Seitz, “'The torus routing chip,” Distrib-
uted Computing, vol. 1, pp. 187-196, 1986.

E.Chowetal., "Hyperswitch network for the hypercube com-
puter,” in 15th Ann. Int. Symp. on Computer Architecture,
pp. 90-99, May 1988.

G. D. Buzzard, ““High Performance Communications for
Hypercube Multiprocessors.” Ph.D. thesis, University of
Michigan, 1988.

W. ). Dally and C. L. Seitz, “Deadlock-free message routing
in multiprocessor interconnection networks,” [EEE Trans.
Computers, vol. C-36, pp. 547-553, May 1987.

F. Harary, J. P. Hayes, and H. . Wu, “A survey of the theory
of hypercube graphs,” Comput. Math. Applic., vol. 15, pp.
277-289, 1988.

L. G. Valiant, A scheme for parallel communication,” SIAM
J. Computing, vol. 11, pp. 350-361, May 1982.

F.Harary. Graph Theory. Reading, MA: Addison-Wesley, 1969.
S. Dutt and J. P. Hayes, “’On allocating subcubes in a hyper-
cube multiprocessor,’’ in Proc. 3rd Int. Conf. on Hypercube
Concurrent Computers & Applications, vol. |, pp. 801-810, Jan.
1989.

M. Livingston and Q. F. Stout, “Embeddings in hypercubes,”
Math. Comp. Modelling, vol. 11, pp. 222-227, 1988.

D. A. Buell et al., “Parallel algorithms and architectures:
Report of aworkshop,” /. Supercomputing, pp. 301-325, 1988.
ParaSoft Corp. Programming Parallel Computers Using the
EXPRESS System, Mission Viejo, CA 92692, 1989.

R.M. Clapp and T. N. Mudge, “ADA on a hypercube,” in Proc.
3rd Int. Conf. on Hypercube Concurrent Computers & Appli-
cations, vol. I, pp. 399-408, fan. 1989.

D. Gelernter, “Generative communication in Linda,” ACM
Trans. Prog. Lang. Syst., vol. 7, pp. 80-112, Jan. 1985.

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 12, DECEMBER 1989



[41]
(42}
(43]

[44]

[49]

(50]
[51]
(521

(53]

[54]

[35]

[56]

[57]

{58]

{591

[60]

{61]

R. Pountain, A Tutorial Introduction to Occam Programming.
Inmos Corp., Colorado Springs, CO, 1983.

R. H. Perrott, Parallel Programming. Woking, England: Addi-
son-Wesley, 1987.

C. Molerand D. S. Scott. Communication Ultilities for the iPSC.
iPSC Technical Report 2, intel Corp., Aug. 1986.

Hypercube Multiprocessors 1986, M. T. Heath, ed. Philadel-
phia, PA: Society for Industrial and Applied Mathematics,
1986.

Hypercube Multiprocessors 1987. M. T. Heath, ed. Philadel-
phia, PA: Society for Industrial and Applied Mathematics,
1987.

G. Fox et al., Solving Problems on Concurrent Processors.
Englewood Cliffs, NJ: Prentice-Hall, 1988.

D. A. Reed and R. M. Fujimoto, Multicomputer Networks:
Message-Based Parallel Processing. Cambridge, MA: The MIT
Press, 1987.

W.R. Martin, T.C. Wan, T. S. Abdel-Rahman, and T. N. Mudge,
““Monte Carlo photon transport on shared memory and dis-
tributed memory parallel processors,” Int. J. Supercomputer
App., vol. 1, pp. 57-74, Fall 1987.

E. W. Felten and S. W. Otto, “Chess on a hypercube,” in Proc.
3rd Int. Conf. on Hypercube Concurrent Computers & Appli-
cations, Vol. I1, pp. 1329-1341, jan. 1989.

A. Rosenfeld and A. C. Kak, Digital Picture Processing. New
York: Academic Press, 1976.

J. M. S. Prewitt, Object enhancement and extraction. New
York: Academic Press, 1970.

J. L. Gustafson, “Reevaluating Amdahl’s law,” Communica-
tions ACM, vol. 31, pp. 532-533, 1988.

T.N. Mudge and T. S. Abdel-Rahman, 'Vision algorithms for
hypercube machines,” J. Parallel and Dist. Computing, vol.
4, pp. 79-94, 1987.

—, Specialized Computer Architecture for Robotics and
Automation, chapter Architecture for robot vision. New
York, NY: Gordon and Breach Science Publishers, 1987, pp.
103-149.

P. N. Swarztrauber, Multiprocessor FFTs. National Center for
Atmospheric Research, Boulder, CO, 1986.

E. L. Lawler and D. W. Wood, “‘Branch-and-bound methods:
A survey,” Ops. Res., vol. 14, pp. 699-719, 1966.

D. W. Sweeney, J. D. C. Little, K. G. Murty, and C. Karel, “An
algorithm for the traveling salesman problem,” Ops. Res., vol.
11, pp. 972-989, 1963.

C. Ingargiola and . Korsh, “A general algorithm for one-
dimensional knapsack problems,”” Ops. Res., vol. 25, pp. 752~
759, 1977.

V. Kumar and L. Kanal, "’A general branch and bound for-
mulation for understanding and synthesizing AND/OR tree
search procedures,” Artificial Intelligence, vol. 21, pp. 179~
198, 1983.

T. S. Abdel-Rahman and T. N. Mudge, "‘Parallel branch and
bound algorithms on hypercube multiprocessors,” in Proc.
3rd Conf. on Hypercube Concurrent Computers & Applica-
tions, vol. I, pp. 1492-1499, fan. 1989.

1.S. Abdel-Rahman, “Parallel Processing of Best-First Branch
and Bound Algorithms on Distributed Memory Multipro-
cessors,”” Ph.D. thesis, University of Michigan, 1989.

HAYES AND MUDGE: HYPERCUBE SUPERCOMPUTERS

John P. Hayes (t ellow, IEEE) received the B.E.
degree from the National University of Ire-
land, Dublin, in 1965, and the M.S. and Ph.D.
degrees from the University of Illinois,
Urbana, in 1967 and 1970, respectively, ali
in electrical engineering.

While at the University of Illinois he par-
ticipated in the:design of the ILLIAC 11t com-
puter and car ‘ied out research in the area
of fault diagnc sis of digital systems. In 1970
he joined the Operations Research Group
at the Shelil Benelux Computing Center of the Royal Dutch Shell
Company in The Hague, The Nether ands, where he was involved
in mathematical programming and software development. From
1972 to 1982 he was a faculty member of the Departments of Elec-
trical Engineering and Computer ‘cience of the University of
Southern California, Los Angeles. He is currently a Professor in the
Electrical Engineering and Computer Science Department of the
University of Michigan, Ann Arbor. I4is research interests include
computer architecture; parallel prccessing; fault tolerance and
reliability; and computer-aided desig n and testing of VLS| systems.

Dr. Hayes was Technical Program Chairman of the 1977 inter-
national Conference on Fault-Tolerar t Computing. He is the author
of over a hundred technical papers and several books, including
Digital System Design and Microprocessors (McGraw-Hill, 1984)
and Computer Architecture and Organization, 2nd Ed. (McGraw-
Hill, 1988). He served as Editor of th2 Computer Architecture and
Systems Department of Communicztions of the ACM from 1978 to
1981, and was Guest Editor of the June 1984 Special Issue of IEFE
Transactions on Computers. He was the founding Director of the
Advanced Computer Architecture Laboratory at the University of
Michigan from 1985 to 1988. He is a inember of the Association for
Computing Machinery and Sigma > i.

Trevor Mudze (Senior Member, I[EEE)
received the B.Sc. degree in cybernetics
from the University of Reading, England, in
1969, and the M.S. and Ph.D. degrees in
computer science from the University of
lllinois, Urbi.na, in 1973 and 1977, respec-
tively.

While at tt e University of lllinois he par-
ticipated in the design of several special
purpose coinputers and did research in
computer architecture. Since 1977, he has
been on the faculty of the University of Michigan, Ann Arbor where
he has taught classes on logic desigr, CAD, computer architecture,
and programming languages. He is presently an Associate Pro-
fessor of Electrical Engineering and Computer Science, and Direc-
tor of the Advanced Computer Arct itecture Lab. In addition to his
position as a faculty member, he i< a consultant for several com-
puter companies in the areas of ar :hitecture and languages.

Dr. Mudge is the author of more than 80 papers on computer
architecture, programming languag es, VLS! design, and computer
vision, and he holds a patent in computer aided design of VLSI
circuits. He is a member of the ACiA and of the British Computer
Society.

1841



