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The architecture and applications of the class of highly parallel 
distributed-memory multiprocessors based on the hypercube 
interconnection structure are surveyed. The history of hypercube 
computers from their conceptual origins in the 1960s to the recent 
introduction of commercial machines is briefly reviewed. The 
properties of hypercube graphs relevant to their use in supercom- 
puters are examined, including connectivity, routing, and embed- 
ding. The hardware and software characteristics of current hyper- 
cubes are discussed, emphasizing the unique aspects of their 
operating systems and programming languages. A sample C pro- 
gram is presented to illustrate the single-code multiple-data pro- 
gramming style typical of distributed-memory machines in gen- 
eral, and hypercubes in particular. Two contrasting hypercube 
applications are presented and analyzed: image processing and 
branch-and-bound optimization. The paper concludes with a dis- 
cussion of current trends. 

I. INTRODUCTION 

Parallel processing seeks to improve the speed with which 
a computation can be done by breaking it into subparts and 
concurrently executing as many of these as possible. The 
past few years have seen the emergence of commercial 
computers that employ hundreds of processors working in 
parallel to achieve the level of performance previously 
found only in multimillion-dollar supercomputers [I]. In 
many of these ”massively” parallel machines, the proces- 
sors are connected in a regular pattern called a hypercube. 
By using hundreds of low-cost microprocessors, the cost 
of these unconventional multiprocessors can be kept rel- 
atively low, putting them within reach of the single user. 
At the same time, extremely high computing performance 
can be achieved. To emphasize these points, one manu- 
facturer has called its hypercube product a “personal 
supercomputer” [2]. This paper explores the origins, archi- 
tecture, and applications of hypercube-based multipro- 
cessors with performance at the supercomputer level. 

The parallel computers of interest here consist of many 
processors and memory units which communicate via an 
interconnection network. The latter can range from a single 
shared bus to a complex multistage interconnection net- 
work [3]. Of particular significance in determining system 

Manuscript received August 5 ,  1988; revised June 5 ,  1989. This 
work was supported by the Office of Naval Research under Con- 
tract N00014-85-K-0531, by DoD Contract MDA904-87-C-4136, and 
by NSF Contract MIP-8802771. 

The authors are with the Advanced Computer Architecture Lab- 
oratory, Dept. of Electrical Engineering and Computer Science, 
University of Michigan, Ann Arbor, MI 48109-2122, USA. 

IEEE Log Number 8933020. 

MUDGE, SENIOR MEMBER, IEEE 

performance i s  the manner in vihich the processors com- 
municate with the memory subsystem. Two major 
approaches are found in contemporary parallel computers. 
The shared-memory approach employs a single central 
memory unit to which all proce!,sors have direct and rapid 
access. Contention for this shared memory, however, can 
result in serious performance lo is. An alternative approach 
i s  to provide each processor with a local memory to which 
other processors have slow and indirect access. Such a dis- 
tributed-memory scheme simplifies the interconnection of 
massive numbers of processors, but raises new problems 
in communication efficiency. 

Most recently introduced m Jltiprocessors have a few 
dozen processors connected to a shared memory over a 
common high-speed bus. Exaniples are the Sequent Bal- 
ance [4] and the Encore Multimax [5 ] .  Another class of 
shared-memory multiprocessors are massively parallel 
machines that provide a connection from each processor 
to a large multiport shared meniory. Examples are the BBN 
Butterfly [6], one of the few comniercially available machines 
in this category, and the RP3, an experimental machine 
developed at IBM [7]. A key featiire of these machines is the 
omega-type multistage intercorinection network that con- 
nects the processors to the sh: red memory [8].  

Massively parallel multiprocessors are typically of thedis- 
tributed-memory variety to avo d the contention problems 
associated with hundreds or thousands of processors shar- 
ing a very large global memory. Zommunication among the 
processors, however, requires i n efficient interconnection 
network. Many proposals for such networks have been 
made, including meshes, pyri  mids, and multistage net- 
works of the type mentioned akove. Given the large variety 
of these proposals, it i s  intere<,ting to note that the over- 
whelming majority of current commercial massively par- 
allel machines are hypercube-( onnected. 

Distributed-memory multip-ocessors such as hyper- 
cubes eliminate most of the at:cess contention problems 
associated with a large shared inemory. They do so by par- 
titioning the system memory i i t o  smaller local memories 
that are distributed among the available processors. Com- 
munication among these local memories then becomes a 
major design issue, since a ri4atively slow input-output 
operation i s  needed to access shared data assigned to a 
nonlocal memory. Such accessc!s take the form of messages 
passed between the local memzwies of the two processors. 
The management of this message-passing has major impli- 
cations on  all aspects of the slistem design, as well as on 
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applications software design. For example, a high-perfor- 
mance switching network or special interprocessor com- 
munication software (which usually is a part of the oper- 
ating system resident in each node) i s  necessary. In addition, 
old algorithms must often be extensively restructured, as 
we will see later, to execute efficiently in the parallel envi- 
ronment created bythese machines. This restructuring has 
also led to major extensions to traditional programming 
languages. 

A hypercube i s  a generalization of the 3-dimensional cube 
graph to arbitrary numbers of dimensions. Just as a 3- 
dimensional cube has 23 nodes (vertices), so an n-dimen- 
sional cube has N = 2" nodes. Similarly, each node of a 3- 
cube has 3 edges (links) connected to it, and each node of 
an n-cube has n edges connected to it. Hypercube multi- 
processors take this simple topology and use it to define 
the interconnection pattern among 2" processors. Proces- 
sors are placed at the nodes of the cube and are connected 
by links along the edges. Figure 1 illustrates hypercubes for 
small values of n. 

0 
I 1  = 0 n = l  

n = 2  n = 3  

01 IO 

I 
, 

n = 4  
Fig. 1. Hypercubes for n = 0, 1, 2, 3, 4. 
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Hypercube topology has several attractive features. First, 
it is homogeneous or node-symmetric in the sense that the 
system appears the same from each node: There are no 
edges or boundaries where nodes may need to be treated 
as special cases. The hypercube achieves a good balance 
between the number of internode links used and their cost. 
It employs n N / 2  links to connect N = 2" nodes, and each 
node processor has n links to manage. In all but afew recent 
hypercubes, nodes not directly connected must commu- 
nicate via messages sent through intermediate nodes in 
store-and-forward fashion. The hypercube topology guar- 
antees that no two nodes are more than n links apart. In 
addition, other useful computational structures, most nota- 
bly meshes of arbitrary dimensions, can be embedded in 
a hypercube in such a way that adjacent nodes in the orig- 
inal structure are also adjacent in the hypercube. Thus for 
a wide class of useful applications, especially in scientific 
computing, the delays associated with interprocessor com- 
munication fall within acceptable limits. Another key factor 
in making hypercube computers practical from a com- 
mercial viewpoint i s  the fact that they can now be built eco- 
nomically with low-cost off-the-shelf microprocessor com- 
ponents[9]. Other proposalsfor massively parallel machines 
often require complex, expensive, and specially designed 
chips if they are to contain a reasonable number of inte- 
grated circuits (ICs). This i s  a more serious restriction than 
it might first appear, since a component count of more than 
a few tens of thousands of ICs puts air-cooled systems at 
the upper limits of acceptable reliability, regardless of the 
complexity of the subsystem within each IC. 

The next section gives a brief history of hypercubes and 
outlines the main features of hypercube architectures. Sec- 
tion I l l  discusses the structural properties of hypercubes 
and their influence on  system design and application. Soft- 
ware design issues and a representative hypercube pro- 
gram are presented in Section IV. Section V examines two 
typical applications in depth: image processing and branch- 
and-bound optimization. Section VI  concludes the survey 
with a brief discussion on current status and trends. 

I I. HYPERCUBE COMPUTERS 

The earliest study of hypercube computers was pub- 
lished by Squire and Palais of the University of Michigan 
in 1963. Their stated goal was to design a computer "where 
the emphasis i s  on the programmability of highly parallel 
numerical computations," with hardware cost a secondary 
consideration [IO], [ I l l .  Among the reasons they cite for 
selecting the cube organization are the ease with which 
paths between nonadjacent nodes can be determined, and 
the fact that all nodes are identical and interchangeable. 
The proposed 12-dimensional (4096-node) Squire-Palais 
machine was estimated to require 20 times the hardware 
of the IBM Stretch, the largest supercomputer of the day, 
but a speedup of at least 100 was anticipated. 

With the advent of the single-chip microprocessor in the 
early 1970s, several other proposals for microprocessor- 
based hypercubes were made. In 1975 IMS Associates, a 
manufacturer of personal computers, announced a 256- 
nodecommercial hypercube based on the Intel 8080 micro- 
processor, but it was never produced [12]. In 1977, Sullivan 
and his colleagues at Columbia University presented a pro- 
posal for a large hypercube called the Columbia Homo- 
geneous Parallel Processor (CHOPP), which would have 
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contained up to a million processors [13], [14]. Also in that 
year, Pease published an important study of the “indirect” 
binary n-cube architecture, for which he suggested a mul- 
tistage interconnection network of the omega type for 
implementing the hypercube topology [15]. 

High hardware cost was clearly a major reason why these 
early hypercube designs were never implemented. The 
appearance of high-performance 32-bit microprocessor 
chips and dynamic RAM chips in the 1 M-bit range in the 
early 1980s made it economically feasible to construct prac- 
tical hypercube computers of moderate size. The first such 
machine was the 64-node Cosmic Cube built by Seitz and 
hiscolleaguesat Caltech,which becameoperational in 1983 
[16]. This pioneering machine employed processor nodes 
based on the commercial Intel 8086/8087 microprocessor 
family. The Cosmic Cube was applied successfully to a vari- 
ety of numerical computation tasks, often yielding signif- 
icant speedups compared to conventional computers of 
similar cost. It was also the first of a series of experimental 
hypercube computers developed at Caltech [17], [I81 and 
provided the main inspiration for the first generation of 
commercial hypercube computers. 

In July 1985, Intel delivered the first production hyper- 
cube, the Intel Personal Supercomputer, or iPSC, which h a s  
a 80286/80287 CPU as its node processor and up  to 128 
nodes. Assuming a peak performance of 0.1 million float- 
ing-point operations per second (MFLOPS) per node, the 
128-node iPSC has a potential or peak throughput of about 
12 MFLOPS. (Note that a traditional vector supercomputer 
such as the Cray-1 has a peak throughput of 160 MFLOPS). 
Two other commercial hypercubes were introduced in 1985: 
NCUBE Corporation’s NCUBE/ten and System 14/n from 
Ametek (subsequently Symult Systems). The System 14/n 
hypercube has up to 256 nodes, each employing an 802861 
80287-based CPU similar to that of the iPSC, and an 80186 
microprocessor for communication management. The 
NCUBE/ten can accommodate up to 1024 nodes, each based 
on a VAX-like 32-bit custom processor with a peak perfor- 
mance of around 0.4 MFLOPS. Thus, a fully configured 
NCUBE system hasa peakthroughput of about400MFLOPS. 
This high performance level i s  supported by extremely fast 
communication rates (both input/output and node-to- 
node), makingthe fullyconfigured NCUBEiten atruesuper- 
computer. In 1988, researchers at Sandia National Labo- 
ratories using a 1024-node NCUBE/ten were the first to meet 
the widely publicized challenges posed by A. Karp and 
C. C. Bell to demonstrate the successful application of mas- 
sive parallelism to large-scale practical problems in sci- 
entific computation [19]-[21]. This work, and that of many 
others, demonstrates convincingly that a properly pro- 
grammed N-node hypercube can provide linear speedup- 
execution speeds that increase in proportion to N-for a 
wide range of computation problems. 

Several new hypercubes with supercomputing perfor- 
mance have been built or announced since 1985, including 
the Caltech/JPL Mark Ill [18], the Floating Point Systems T 
Series[22], and the Intel iPSC/2[23]. Someof these machines 
incorporate pipelined vector processors in their nodes, a 
feature of most earlier supercomputers. In some instances, 
they also employ special routing circuits to allow direct 
communication paths to be established between nonad- 
jacent nodes. The second-generation Intel iPSC/2, for 
instance, has avector-processing capability, as well as a cir- 

cuit-switching internode com nunication network to 
replace the slower store-and-for Nard technique [24]. Peak 
performance figures in excess of 1000 MFLOPS (1 CFLOPS) 
are cited by the manufacturers o these newer hypercubes. 
The new communication hardware has reduced the time 
to pass a message between two nodes from a few milli- 
seconds toafew microseconds. I i fact, by effectively reduc- 
ing the distance between all pai s of nodes to a small con- 
stant, a programmer can view the system as a pool of 
processors with a complete set of node-to-node connec- 
tions. As a result, the requiremer t that the application algo- 
rithms have a hypercube-like cc mmunication structure is 
diminishing in importance. Furt iermore, it raises the pos- 
sibility of implementing a share j-memory architecture on 
a hypercube platform. 

A few other recent supercoinputers employ architec- 
tures that have been heavily inf uenced by the hypercube 
concept. The Connection Machine series manufactured by 
Thinking MachinesCorporation employs up t02 ’~o r  65 536 
simple processing nodes [25]. Sixteen nodes are placed on 
a chip with switching circuity t iat allows any node to be 
directly connected to any other node on the chip. The 2” 
chips of the Connection Machiiie form the nodes of a 12- 
dimensional hypercube. The second-generation, CM-2 
model of the Connection Mach ne announced in 1987 has 
a peak performance target of 2.5 GFLOPS [25]. The Symult 
Systems 2010 introduced in 198t’ has up to 256 nodes inter- 
connected as a toroidal mesh vihich, as we will see later, 
is closely related to a hypercube [26]. 

The basic architecture of a hy3ercube node processor i s  
shown in Fig. 2. It is a self-conta ned computer with a CPU, 

Bidirectional links to other nodes a i d  external 110 

r 

I/O Channels 

t t t  t 

I I Local 
Memory 

U I 

Fig. 2. Architecture of a typical ncde processor. 

local memory for programs anc data, and an input/output 
(I/O) subsystem. its main distirguishing feature is the set 
of bidirectional I/O channels ihat link the node to its n 
immediate neighbors in the hypercube. These channels are 
used for interprocessor messag,e passing and are typically 
implemented as bit-serial links with direct memory access 
(DMA) to the local memories of i he nodes being linked. Pro- 
cessors not directly connected to one another by 1/0 links 
can communicate via intermediate nodes, which relay mes- 
sages between the source ancl destination nodes. Addi- 
tional links may be provided to connect each processor to 
a host computer and I/O devic2s such as secondary (disk) 
memories; in some instances i II access to the I/O system 
i s  via the host computer. The hast acts as a general system 
supervisor providing such opc.rating system functions as 
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I/O management, as well as program editing and compi- 
lation facilities. 

Communication issues play a central role in the archi- 
tecture and performance of hypercubes and, indeed, of all 
distributed-memory computers. Hypercubes are typically 
configured so that the nodes execute the same application 
program on different data sets. Each node's program and 
data are stored in its local memory, so that most compu- 
tation is  within the individual nodes. When two nodes need 
to share information-for example, to exchange results- 
the shared data must be inserted in a message which i s  
transmitted via a series of I/O transfers, possibly involving 
other nodes. The delay required for a node to obtain a data 
item in this fashion from one of i t s  immediate neighbors 
is  perhaps 1000 times the delay incurred when accessing 
data in the node's local memory. Thus great pains are taken 
to design hypercube application programs to minimize the 
need for message-passing, and to  confine unavoidable 
message-passing to adjacent or nearly adjacent nodes. 

The earliest hypercubes used store-and-forward com- 
munication schemes, which required of the order of 1 ms 
to transfer a message between adjacent nodes; k separate 
transfers or "hops" are necessary when source and des- 
tination are k links apart. Improvements in the efficiency 
of the message-passing software can reduce this delay by 
a factor of 10 or so [27]. However, to reduce the delay to a 
level comparable to the local memory access time (1 ps or 
less), hardware routing circuits have been devised. The 
Torus routing chip [28] and the Hyperswitch used in the JPL 
Mark I l l  hypercube are examples of these [29]. 

The routing circuits proposed for hypercubes resemble 
crossbar switching networks and provide direct (circuit- 
switched) connections between arbitrary pairs of I/O chan- 
nels associated with a single node. This permits a message 
to pass from source S to destination Dwithout being stored 
at intermediate nodes. In effect, a direct high-speed circuit 
i s  established between Sand D. Provided they do not con- 
tend for the same links, several separate circuits can pass 
through the same routing switch. A number of strategies 
have been devised for dealing with contention when it 
occurs. The "wormhole" approach of Dally and Seitz [28], 
versions of which are used in iPSC/2 and the Symult Sys- 
tems 2010, allows a blocked message to retain control of the 
routing circuitry up to the blockage point: It i s  queued in 
the network until the blockage clears. Alternative "adap- 
tive" strategies to the wormhole approach used in con- 
junction with the Hyperswitch attempt to find a free path 
around a blocked node [29]. Finally, there is a class of rout- 
ing strategies that are adaptive only on their first hop as the 
message leaves S[30]. These reduce the likelihood of block- 
age and simplify deadlock avoidance, a concern with adap- 
tive routing [31]. 

A hypercube computer i s  managed by an operating sys- 
tem (OS) which resides mainly in the host machine. The OS 
management functions peculiar to  hyperrubes include 
allocation of subcubes of nodes (smaller hypercubes 
formed byasubset of theavailable nodes)to multiple users, 
loading programs into the nodes (often done by a broad- 
casting operation), and managing processor-processor and 
processor-l/O corn m u n ication. Corn m u nication functions 
such as message storing and forwarding may be assigned 
to the hypercube nodes in the form of a small node-resident 
OS kernel. It should be noted that node processes are 

* 

inherently asynchronous, so that any necessary synchro- 
nization among processes in different nodes must be taken 
care of by the OS. 

Because of the large numbers of nodes that may be 
present, packaging considerations are also very important 
in hypercube design in order to keep physical size, power 
consumption, and cooling needs within reasonable limits. 
The Connection Machine employs simple I -b i t  processors 
and i s  therefore able to accommodate 16 node processors 
on a single custom IC. Thirty-two of these chips, their mem- 
ories (4K bits per processor), and internode communication 
circuitry are placed in a single printed circuit board. Most 
commercial hypercube machines employ conventional 
32-bit processors with much larger and expandable local 
memories. In a more typical case such as the Intel iPSC, the 
node consists of one or two small boards with several mega- 
bytes of local memory. An intermediate case represented 
by the NCUBElten has a 7-chip node comprising a custom 
32-bit microprocessor chip and six memory chips with a 
combined storage capacity of 0.5 M B .  Sixty-four nodes can 
be placed on a large (16 x 22-in.) board; however, this for- 
mat does not allow for memory expansion. Figure 3 shows 

Fig. 3. 64-node NCUBElten processor board. 

a 64-node NCUBElten processor board, which functions as 
a 6-d i mens ional hypercube. 

Ill. STRUCTURAL PROPERTIES 

The graph properties of hypercubes that are relevant to 
their use in supercomputers [32], are examined next. An n- 
dimensional hypercube graph Q, can be defined recur- 
sively as follows: 

Qi = K2 

Q n  = K, X Qn-7 

where K2 is the 2-node complete graph, and x denotes the 
Cartesian product of graphs. This definition implies that Q, 
contains many subcubes of smaller dimensions, a property 
that may be exploited in several ways. For example, a hyper- 
cube Q, can accommodate multiple users simultaneously 
by assigning each user a disjoint subcube Qk within Q,, 
where k 5 n. Furthermore, a measure of fault tolerance can 
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be achieved by assigning to users only those subcubes that 
exclude known faulty nodes. 

Q, contains N = 2" nodes of degree n, and n2"-' edges. 
Thus, as the number of nodes N i s  increased to improve 
performance, the connection requirements of each node 
increase at a rate proportional to n = log, N. This implies 
that practical limitations on the number of links per node 
can be met while allowance is made for the increased com- 
munication needs of a larger hypercube. Each node of Q, 
is at distance one from n other nodes. The maximum inter- 
node distance or diameter of Q, is  n, which therefore 
defines the worst-case communication delay. The average 
internode distance i s  (n2"-')/(2" - I), which rapidly 
approaches n/2 as n i s  increased. 

The nodesof Q, may easily belabeled withn-bit addresses 
insuchawaythat nodesadjacentin theithdimensiondiffer 
only in the ith address bit (see Fig. 1).  The resulting set of 
2" addresses {OO..O, 00. . I ,  . . . ,11. . I }  facilitate the imple- 
mentation of key communication algorithms, including 
node-to-node routing and broadcasting from one node to 
the entire hypercube. Two basic programs for this purpose 
appear in Fig. 4. A copy of each is assumed to reside in every 
node of the hypercube as part of its resident OS. The pro- 
gram i s  executed whenever a message i s  generated locally 
or is received from another node for routing or broad- 
casting. The same basic communication algorithms are also 
implemented in the circuit-switching hardware discussed 
in  Section I I .  

Figure 4(a) gives the basic node-to-node routing algo- 
rithm ROUTE which always selects a minimum-length path 

procedure ROUTE; 
begin 

for next message from s , - ~  J ~ . ~ . . . S ~  to d,-, d, -,... & do 
begin 

zn.i z , . 2  ... zn := (sn-i @ dn-~)(sn-z @ 4 - 2 1  ... (so @ 4,); 
for I := 0 to 11-1 do 

if zI = 1 then begin 

end: 
send message to i-th neighbor; exit; 

end; 
end 

(a) 

procedure BROADCAST; 
begin 

if the current node IS the source then C := 11 ... 1 

for I := 0 to n ~ 1 do 

ct := 0; 
send message and C to i-th neighbor; 

else receive message and control word C = C . . , C , ~ ~ . . . Q ;  

i f  c, = 1 then begin 

end; 
end. 

(b) 
Fig. 4. Hypercubecommunication algorithms. (a) Node-to- 
node routing. (b) Broadcasting. 

between the source node S = S,-,S,,-, . . . so and the des- 
tination node D = dn-ld,-z . . . do. ROUTE first computes 
X = S 0 D where 0 denotes the bitwise EXCLUSIVE-OR 
operation. It then scans X in a fixed direction, say, left to 
right. If ROUTEencounters somex, = 1, it transmits thecur- 
rent message to its immediate neighbor along the i th 
dimension of Q, (its i th neighbor). If X = OO..O, then the 
current node must also be the destination, and the message 
is retained for processing. By transmitting the message to 
a node whose i th address bit i s  1 whenever it encounters 

x ,  = 1, ROUTE ensures that the ROUTE program in all sub- 
sequent nodes will find x, = 0. Hence the message i s  always 
sent closer to the destination. It therefore travels the min- 
imum possible distance from S t3 D, which is the number 
of ones in S CB D. An alternative routing algorithm devel- 
oped by Valiant [33] routes each rnessage to a randomly cho- 
sen node; from there the messag,e is forwarded to its orig- 
inally intended destination. The randomization assures that 
message congestion at nodes will be dispersed. Unfortu- 
nately, Valiant's router does nclt perform as well as the 
straightforward algorithm in many routine parallel pro- 
cessing tasks, and its more 1:omplex implementation 
requirements have discouraged its use. 

A basic broadcasting algorittim, BROADCAST, i s  pre- 
sented in Fig. 4(b). Assuming th,it each node can transmit 
themessagetoonlyone neighboratatime,and thatasingle 
messagetransmission takes time T, BROADCASTallows the 
message to be sent to all nodes ill time n7, which i s  the min- 
imum possible. A control word (:is transmitted along with 
the message, and serves to tell each receiving node the 
dimensions along which it shou d retransmit the message. 
The first node S transmits the nessage and (and C) to a 
neighbor T in the first time per od. I n  the second period, 
both S and T retransmit the message to two more nodes, 
and so on. Hence the number i f  copies of the messages 
being transmitted in successive time periods i s  1, 2, 4, 
. . . , 2"- 'so that all nodes are reached within n periods. 
Faster broadcasting can be achieved if a node transmits sev- 
eral copies of the message simiiltaneously. 

Hypercubes have avery regul'ir structure, which has sev- 
eral practical implications. As noted in Section I, they are 
homogeneous in the sense that the system structure looks 
the same from every node. In grilph theoretic terms [34], Q, 
i s  symmetric, meaning that every pair of nodes or lines can 
be interchanged without altering the graph structure. This 
property, combined with the f,ict that Q, contains many 
easily identified subcubes of dimensions smaller than n, 
leads to the following conclusiams. 

1) A program can readily be cesigned to run unchanged 
on a hypercube of any dimen*,ion k 5 0 by making k a 
parameter of the program. Thus program development can 
beconductedonasmall subcub.,e.g.,onewith n = 2,while 
production runs can be executed by a larger hypercube. 

2) A large hypercube computer can be efficiently shared 
by multiple users, each of whor l  i s  assigned a disjoint sub- 
cube by the OS. Such a scheme s implemented by the AXIS 
operating system of the NCUBElten, which allows a user to 
specify the dimension k of a de ;ired hypercube. AXIS then 
allocates a Q k  from among the zvailable free nodes, if it can 
find one. Several efficient methods for handling arbitrary 
sets of subcube allocation recluests have recently been 
developed [35]. The subcube Clk of Q, can be viewed as a 
logical entity which can be relocated anywhere in Q, by 
EXCLUSIVE-ORing the address of each node in Qk with the 
address of the node in Q, chosen as the logical origin. 
Broadcasting, and message trar sfers in general, can be per- 
formed using the logical nodt addresses. This simplifies 
many message transfer algoritlims. 

Hypercubes have many attra:tive and useful embedding 
properties, some of which havc been studied by graph the- 
orists for more than 20 years [?6]. An (isomorphic) embed- 
ding of G into G' i s  a one-to-orle mapping I$ of nodes of G 
onto nodes of G', such that if :U, 11) i s  an edge of G, (+(U), 
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@ ( U ) )  is an edge of G’. G is termed cubical if it has an embed- 
ding in the hypercube Q,, for some n. Among the useful 
graphs that are cubical are trees (cycle-free graphs) and 
meshes of any dimension. The latter result is especially 
important since many large-scale numerical problems have 
data structures defined on d-dimensional meshes. Their 
solution-for example, by relaxation methods-requires 
efficient communication between neighboring nodes on 
the mesh. Thus, to  solve such mesh-oriented problems on 
a massively parallel computer, it i s  very desirable that 
meshes be isomorphically embeddable into the structure 
of the host computer. This i s  underscored by the fact that 
at least one hypercube manufacturer has also introduced 
a product with a mesh rather than a hypercube intercon- 
nection structure [26]. 

Figure 5 illustrates how a 2-dimensional 4 x 4 mesh can 
be embedded in Q4; the labels assigned to the mesh nodes 

n n n n 

Fig. 5. A 4  x 4 mesh labeled for isomorphic embedding in 
Q4. 

correspond to the hypercube node labels in Fig. 1. Note that 
Q4 can also accommodate a toroidal 4 x 4 mesh in which 
the edge nodes are connected in end-around fashion, as 
indicated by the dotted lines in Fig. 5. In  general, ad-dimen- 
sional nontoroidal k ,  x k ,  x . . . x kd mesh M can be 
embedded in a hypercube Q,, of dimension n 2 [log, 
k , l  . If the dimension n of the available hypercube com- 
puter is too small, a mesh problem can often be partitioned 
efficiently into smaller mesh problems, each of which can 
be solved separately on the hypercube. An embedding of 
the k ,  x k2 x . . . x kd mesh M into Q, can easily be 
obtained by labeling the nodes of M so that the sequence 
of sublabels assigned to each dimension forms a Gray code 
[36]. For example, the nodes of the 4 x 4 mesh in Fig. 5 have 
labels alaoblbo in which alaO and b,bo assume the values G 
= 00,01,11,10along thevertical and horizontal dimensions 
of the mesh; G i s  a 2-bit reflected Gray code. 

IV. SOFTWARE 

The emergence of the commercial hypercube computer 
has demonstrated the feasibility of constructing low-cost 
massively parallel machines. The focus of research can now 

be expected to  shift to  the issue of how these machines can 
be programmed effectively. Indeed, a recent study con- 
cludes that the lack of appropriate parallel programming 
languages and software development tools i s  the single big- 
gest impedimenttothewidespread useof parallel machines 
[37]. The operating system is also a major factor, as memory 
management, interprocess communication and other OS 
functions are critical to  overall system operation. Three 
major software issues must be considered: the operating 
system used for developing application programs; the run- 
time operating system in the hypercube nodes, and the set 
of application programming languages to  be used. 

High-order parallel programming languages and support 
tools are essential if users of parallel systems are to develop 
machine-independent concurrent software [38]. Such soft- 
ware will hasten the day when reusable software becomes 
a reality for parallel machines, as it now is for conventional 
uniprocessors. The programming of hypercubes i s  nor- 
mally done by writing a separate program to run on each 
processor. The programs communicate by low-level mes- 
sage-passing operations provided by the OS and available 
to the programmer through extensions to a sequential lan- 
guage such as C or FORTRAN. Typically, these programs are 
copies of a single program. The distinct copies will execute 
correctly regardless of their location in the hypercube. This 
style of programming is referred to as single code multiple 
data (SCMD) or single program multiple data (SPMD). 

Two major problems with the SCMD style of program- 
ming are the lack of type checking in internode commu- 
nications and the machine dependence of the code. These 
problems can be solved by using a suitable parallel lan- 
guage, that is, one whose units of concurrency are distrib- 
uted across the processors and executed simultaneously. 
To be effective, such languages should be able to  perform 
type checking across processor boundaries, provide lan- 
guageconstructs for interprocess communications that can 
also function across processor boundaries, allow data shar- 
ing between processes to be specified at the language level, 
and provide for synchronous creation and termination of 
processes within a program. Languages that meet these cri- 
teria are discussed in [391-[42]. 

UNlX providesan attractive OS environment for software 
development on both sequential and parallel machines. As 
a result, it i s  supported (in several different versions) by most 
of the hypercube manufacturers. The NCUBEiten, for exam- 
ple, has a UNIX-like operating system called AXIS [9]. It pro- 
vides the normal UNlX utilities for editing, debugging, and 
resource management which treat most system resources 
as files. The NCUBE/ten incorporates up to eight I/O sub- 
systems to meet the high I/O bandwidth requirements of 
a supercomputer. These are organized, under AXIS, as one 
distributed file system to avoid having to deal with multiple 
separate file systems. AXIS manages a hypercube as a device 
file that can be opened, closed, and so forth, as if it were 
a normal file. It permits users toallocate subcubes that have 
the approprite dimension for their application. Thus, one 
or two users with large problems or several users with small 
problems may share the hypercube. This flexibility greatly 
increases the system efficiency and gives a hypercube 
supercomputer a significant advantage over conventional 
supercomputers. Partitioning the main hypercube into 
subcubes i s  simplified in that each subcube i s  easily iso- 
lated logically from all other subcubes. A small OS nucleus 
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called VERTEX is resident in each of the NCUBE/ten nodes. 
Its primary function i s  t o  provide communication between 
the nodes. It achieves this by, among other facilities, send 
and receive operations that transfer messages between any 
two nodes in  the hypercube, using the ROUTE algorithm 
of Fig. 4(a), and by a "whoami" operation that allows a pro- 
gram to determinewhich logical node it is executing on and 
which I/O processor it i s  connected to. 

We conclude this section with a sample SCMD program 
that calculates the maximum element of a vector of num- 
bers v. More formally, the program calculates, 

S = max v[i] 
I d r z K  

001 
002 
003 
004 
005 
006 
007 
008 
009 
010 
011 
012 
013 
01 4 
015 
01 6 
01 7 
018 
010 
020 
021 
022 
023 
0 2 4  
025 
026 
027 
028 
029 
n3o 
031 
032 
033 
034 
035 
036 
037 
038 
039 
0 4 0  
041 
042 
043 
044 
0 4 5  
046 
047 
048 
049 
050 
051 
052 
053 
054 

whereK= n . 2d'm,nisthenumb2rofelementsofvineach 
node of the cube, and dim i s  the dimension of the cube. 
A listing of the program, which i s  written in  a parallel exten- 
sion of the C language, appears ir l  Fig. 6. This particular pro- 
gramming language i s  NCUBE'! version of C, but other 
hypercube manufacturers use s milar extensions to C (cf. 
Intel [43]). The extensions to C include internode send and 
receive operations implementetl as function calls nwrite 
and nread, respectively; and the whoami operation imple- 
mented by the function called Nhoami. These functions 
are part of the OS resident in the hypercube nodes. We 
assume that a copy of this program has been loaded into 
each of the nodes of a particulars ubcube that has been allo- 

/ *  NODE PROGRAM TO CALCULATE THE MAXIMUM OF A VECTOR v 

P" : caller's logical processor number in subcube 
proc : process number in node 
host : node on Host for cube communication 
dim : dimension of allocated cube * /  

whoami (&pn, bproc, hhost, &dim) ; 

/ *  Receive vector of length n from the host; VECLEN ia the 
possible length of the vector. ( 4  bytes per vector element) */ 

cf = 0; 
type = DATA; 
n = (nread( (char *)v,VECLEN*4, Chost, &type, &cf) /4) ; 

/*  Find m, ths local maximum of v in this node * /  

m = MINF; 
for (i = 0 ; i < n ; ++i) if (v[il > m) m = v[il; 

for (i = dim ; i > 0 ; --i) ( 

/*  Execute once f o r  each axis of the hypercube */ 

if (pn < power(2,i)) ( 

/ *  If this node is in the active part of the collapsed cube, 
do the computation below, otherwise the node is done. 
npn is the neighbor of pn on the i-th axis * /  

type = MAX; 
npn = pn"power(2, (i-1)); 
if (npn < pn) 

/* If neighbor's number is less, send the local maximum; otherwise 
receive it and update its value. /* 

nwrite( (char *)&m,4,npn,type,&cf); 

nread( (char * )  6rm, 4, &npn, &type, hcf) ; 
if (rm > m) m = rm; 

else ( 

1 

1 

/* send the final result back to the host */ 

if (pn == 0) { 
type = RESULT; 
nwrite ( (char *) &m, 4, host, type, &cf) ; 

1 
Fig. 6. SCMD program to find the  maximum element of a vector. 
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cated to this particular job. Execution of the program may 
be summarized as follows: It reads in equal numbers of the 
elements of v into each node, forms local maxima of these 
numbers, and then selects, in turn, the largest of these local 
maxima along successive dimensions of the hypercube. The 
selection process collapses the active part of the compu- 
tation into smaller and smaller cubes. 

The call to whoami on line 009 returns the calling pro- 
gram's logical node number (pn), the node on the host 
board used for 110 communications (host), and the order 
of the allocated subcube (dim). The call to nread on line 
017 reads in an n-element slice of the vector v from the 
host. The for loop on line 022 finds the maximum element 
of the slice of v in the node (m is  initially set to --03 on line 
021). This i s  done in parallel in each node. During this phase 
of the computation, all 2d1m nodes are doing useful work 
and the utilization of the allocated cube approaches 100%. 
2dim ~ 1 new maxima are formed by comparing pairs of local 
maxima in nodes that are immediate neighbors in the dimth 
dimension. The new maxima are now confined to a (dim 
- 1)-dimensional hypercube; in effect, the active cube i s  
collapsed to half i t s  initial size. This process of collapsing 
the active cube by half and selecting a new smaller set of 
maxima i s  repeated until the maximum of all the elements 
of v appear in logical node 0. The selection of the maximum 
among the nodes simulates a tree of comparators. Figure 
7 illustrates this for a 3-cube. 

dimensions 

3 

t 

0-cube 
dimension 1 

dimension 2 dczh ::":: dimansion 3 

1-cube 

Fig. 7. Comparator tree to find the maximum. 

The for loop that begins on line 024 starts at the highest 
dimension (dim) and finds the larger of each pair of local 
maxima in nodes that are adjacent in the highest dimen- 
sion. It repeats this, stepping through all the dimensions. 
Line 028 selects the nodes (pns) in the part of the hyper- 
cube that remains active after collapsing along the (i + 1 ) s t  
dimension. The neighboring nodes (npns) of the pns are 
those whose addresses differ in the i t h  bit position. Their 
addresses are calculated in the line 035 by performing the 
EXCLUSIVE-OR operation ( - )  on p n  and 2'l-l). Line 036 par- 
titions the active nodes into two sets: those that are to 
receive local maxima (line 043) and those that send them 
(line 041). Line 044 finds the larger of the received value 

and the local maxima already present in the node. Those 
nodes that send will not be active in the next iteration of 
the loop. Line 053 transmits the result from node 0 to the 
host. 

V. APPLICATIONS 

Figure 8 shows a representative l i s t  of applications of 
hypercube computers. This i s  by no means an exhaustive 
list, but it does illustrate the wide range of applications to 

Mathematics 
Conipurational geometry 
Prime number generation 

P a i c l e  transpon 
Lattice gauge theory 
Molecular dynamics simulation 

Polymer simulation 
Chemical reaction dynamics 

Seismic data processing 

Resource allocation 

Game playing 
Generalized search 

Placement, layout arid routing 
Circuit simulation 

Image processing and computer vision 
Image restoration 
Image encodingldecoding 
Object recognition 

Airfoil simulation 
Electromagnetic scattering 
Robot ann control algorithms 
Darahases and tile systems 
Soiling 

Physics 

Chemistry 

Geology 

Operations research 

Anificial intelligence 

Coniputei-aided design for VLSI 

Other 

Fig. 8. List of applications. 

which hypercubes are being applied. For a detailed picture 
of these applications, the reader i s  referred to  [44], [45], the 
book by Fox et al. [46], and the book by Reed and Fujimoto 
[47]. Although the number of applications has grown rap- 
idly, they are predominantly in the area of scientific com- 
puting in which the behavior of a physical system i s  being 
analyzed. For the majority of these applications, the par- 
allelism can be determined at compile-time and depends 
on a simple partitioning of the problem domain which i s  
often a physical space. For example, in the particle trans- 
port problemsof photons in afusion plasma[48], the under- 
lying algorithm is a Monte Carlo method which divides 
physical space into equal subregions, then simulates par- 
ticle behavior for each space independently, and finally 
averages the results obtained from the separate Monte 
Carloexperiments. Similarly, in thecaseof many image pro- 
cessing algorithms, as we will see below, the image i s  par- 
titioned into subimages of equal size that are assigned to 
separate processors. 

In contrast to the applications with compile-time paral- 
lelism, hypercubes are also beginning to be used in appli- 
cations where the degree of parallelism cannot be deter- 
mined before the program is  run, and where, consequently, 
load balancing of work among the processors at run-time 
becomes an issue. Examples from Fig. 8 are database appli- 
cations, where addition and deletion of records has the 
potential to cause some processors to be underutilized, and 
resource allocation algorithms, which are usually solved 
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using branch-and-bound algorithms, as will also be exam- 
ined further. These algorithms are particularly "dynamic" 
in their behavior because they spawn work in an unpre- 
dictable fashion during their execution. 

In the remainder of this section we review in detail two 
applications that typify both ends of the spectrum: obvious 
compile-time parallelism and dynamic or run-time paral- 
lelism. The first i s  an image processing application which 
has a large degree of natural parallelism. By making use of 
the embedding ideas of Section Ill, it can be implemented 
on a hypercube in  afairly straightforward fashion. The sec- 
ond i s  the 0-1 integer linear programming (ILP) problem. 
This is one of the simplest examples of a large class of algo- 
rithms called branch-and-bound methods, which are used 
in artificial intelligence and operations research. Unlike the 
majority of applications of hypercubes, in which the work 
of each node can be scheduled apr ior i  by the programmer, 
branch-and-bound programs schedule processes dynam- 
ically at run-time. At first sight, this would seem to make 
them inappropriate for hypercubes because of the com- 
munications overhead associated with dynamic schedul- 
ing. Like the implementation of chess on a hypercube 
reported in [49], the branch-and-bound application shows 
that many problems hitherto considered unparallelizable 
have, in fact, a substantial content of exploitable parallel- 
ism. 

A. Image Processing 

The term image processing covers an important class of 
techniques that include the encoding/decoding of images 
for transmission, the enhancement and restoration of noisy 
images, the extraction of features such as edges, and the 
segmentation of images for the purposes of image under- 
standing [50]. An image i s  a2-dimensional mesh of elements 
(pixels) that can take on a finite number of values (typically 
256). These values, or gray-levels, represent the light inten- 
sity at each point in the image. 

A widely used image-processing technique i s  to convolve 
the image with a finite impulse response (FIR) function. 
Depending on the particular FIR function, this operation 
can be used for edge detection, template matching, noise 
removal, and general filtering. The FIR function is defined 
as an m x m matrix K(a, P )  of constant coefficients referred 
to as the kernel. The kernel i s  moved across the image in 
one-pixel steps to implement the convolution function. At 
each step the pixel Pin(/, j )  coinciding with the center of the 
kernel i s  replaced by Pour(i, j ) ,  such that, 

a =  Lrni2J (3= ,mi21 

c Pl,,(i, j )  K ( a ,  P )  = a=-Im/21 i _ i = - [ m / r J  

A typical example of an image-processing algorithm involv- 
ing the convolution of the image with FIR functions i s  the 
Sobel edge detection algorithm [51]. The image i s  con- 
volved with the each of the two FIR kernels shown in Fig. 
9 (an integer approximation to the exact kernels i s  shown). 
The results of the convolution are the two images e, and 
ey where e,(;, j )  i s  an M x M array of x-direction edge (gra- 
dient) strengths, and ey(i,j) i s  an M x M mesh of y-direction 
edge (gradient) strengths. These two arrays are then com- 
bined to form a combined edge strength array, €, and an 
edge direction array, 8 where 

E(;, j )  = 

Fig. 9. 

and 

A *  

The Sobel edge detector kernels. 

It can be seen from these equiitions that equal-size areas 
of the image require equal amounts of processing. There- 
fore, the natural approach to executing these algorithms on 
hypercubes i s  to partition the imiige into subimages of equal 
size and assign each subimage .o a separate node proces- 
sor. The subimages can be proc2ssed in parallel, using the 
mesh embedding technique of jection Ill to map adjacent 
subimages to adjacent nodes of the hypercube. Figure 10 

Image of .I/ I .I/ $ixels 

'I 
01 

11 

I O  

Subimage of x F  pixels 

Fig. 10. Partitioning the image. 

Assign this subimage 
to node 01 11 

Data required 
\ 

by A 

illustrates this for an image of 2/1 x M pixels and a 4-cube; 
here the image i s  partitioned into 16 equal subimages. 

In general, convolving with an FIR function i s  imple- 
mented in theSCMD modeofSx t ion  IV.Theonlypotentia1 
contributor to inefficiency i s  the communication overhead 
that results from the need to exchange data around the 
edges of each subimage to allow the edge pixels to be con- 
volved with the kernel. This i j  also illustrated in Fig. IO, 
which shows a subimage in processor A and the data 
(shaded) that have to be move j from adjacent processors. 
The number of pixels that has to be transferred is roughly 
2 M m I f i  if n i s  even, and 3Mn;lCN if n i s  odd. (Recall that 
m x m is the size of the kerne , M x MIN is the size of the 
subimage, and N = 2" i s  the liumber of processors). The 
communication time necessary to move the pixels is pro- 
portional to their number. Hobdever, as we have seen, com- 
munications are often perforried as DMA operations and 
can be completely overlapped with processing. Of course, 
for large kernels and small su bi nages a point can be reached 
where overlap is impossible and communication times start 
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to dominate. This highlights the importance of having suf- 
ficiently large problems for a particular size of hypercube 
if i t s  efficiency i s  to be maintained [52]. Results reported in 
[53] showthat convolvingwith a simple FIR kernel can easily 
be performed at video frame rates (thirty 512 x 512 images 
per second). 

It can be shown that if the discrete Fourier transform and 
i ts  inverse are implemented by the FFT algorithm and if m 
i s  greater than about 10 [54], then it i s  more efficient to per- 
form convolution in the frequency domain for a 512 x 512 
image. The hypercube network i s  well suited to efficient 
implementation of the FFT, with communication occurring 
between pairsof adjacent nodes[55].Thedata layout shown 
in Fig. 10 i s  also appropriate for calculating the FFTs, and 
for computing their product in the frequency domain. The 
FFT and i ts  inverse require data to  be communicated 
between subcubes, that is, between adjacent regions in Fig. 
I O .  These, of course, are in adjacent processors. 

B. Branch-and-Bound Algorithms 

Our second representative application area for hyper- 
cubes concerns problems for which there exists no com- 
putationally efficient "direct" solution. A solution i s  often 
found via a heuristic search through a large solution space. 
Unguided search, however, can easily become inefficient 
as many of these problems are at least NP-complete. Several 
techniques have been developed to guide the search and 
improve i ts  average efficiency. The most general of these 
techniques is the branch-and-bound (B&B) algorithm [56], 
which has been used to solve some well-known problems, 
including the traveling salesman problem [57], the knap- 
sack problem [58], and many of the heuristic search algo- 
rithms in artificial intelligence such as A*, AO", and alpha- 
beta [59]. 

The branching action of a B&B algorithm is performed by 
building a search tree, called a B&B tree, over the problem 
space of interest. The root of the B&B tree represents the 
complete problem space, and children nodes represent 
subspaces. The branching process proceeds from the root 
to the leaves of the tree, systematically partitioning sub- 
spaces into smaller ones. The leaf nodes represent sub- 
spaces that are small enough to  be exhaustively searched 
for solutions. A subproblem P, can be characterized by the 
valueofanobjective function f,which isdefinedasthevalue 
of the best solution that can be obtained from P,. This value 
i s  not known, however, until the subtree rooted at P, iscom- 
pletely expanded. Instead another function h, referred to 
as the lower bound function, i s  used as an estimate of f. In  
general, h i s  a heuristic function that is much easier to com- 
pute than f. 

A B&B algorithm consists of four major procedures: 1) 
selection, 2) branching, 3) elimination, and 4) termination 
test. The selection procedure selects a subproblem from 
the set of subproblems that have been generated but not 
yet examined (the active subproblems). The selection is per- 
formed according to the heuristic selection function h 
which determines the order in which the subproblems are 
selected for expansion. A commonly used heuristic i s  best- 
first search, in  which h i s  a lower bound estimate of the 
objective function f. Subproblems with smaller lower 
bounds are selected first. The branching procedure exam- 

ines the currently selected subproblem and uses problem- 
specific methods to break it into smaller-sized subprob- 
lems. The elimination step examines these newly created 
subproblems and deletes the ones that cannot lead to bet- 
ter solutions than those already found. To accomplish this, 
a special subproblem referred to as the incumbent is used 
to store the best feasible solution discovered during the 
search. A subproblem is  deleted if its lower bound is  greater 
than or equal to that of the incumbent. Finally, the ter- 
mination test procedure eliminates a new subproblem that 
cannot lead to feasible solutions. Again, problem-specific 
techniques are used to  accomplish this. 

We now describe a specific problem that uses the B&B 
algorithm, viz., the0-1 ILP problem. This i s  an optimization 
problem in which it i s  desired to minimize the value of a 
linear objective function f ( x , ,  x 2 ,  . . . , x,) subject to  a set 
of constraints. The variables ( x , ,  x 2 ,  . . . , xn), can take only 
the values 0 or 1. The problem can be more formally stated 
as follows: 

I7 

Minimize f = clxI 
I - 1  

subject to the constraints 
n 

/ = ,  X a x  ' I  I > b ,  - / = I  I ,  2 . . .  , m  

xI E (0, 1)  j = 1, 2, . . . , n 

It can be assumed, with no loss  of generality, that the coef- 
ficients cI, = 1, 2, . . . , n are nonnegative. The solution 
method involves systematically assigning zeros and ones 
to some of the xI variables to obtain subproblems. A sub- 
problem which has the smallest lower bound is  selected 
from the list of active subproblems. An unassigned variable 
is picked and i s  assigned the values 0 and 1 to create two 
new subproblems. Each subproblem is evaluated and, if it 
represents a feasible solution and i t s  lower bound i s  less 
than that of the incumbent, then it becomes the new incum- 
bent. Furthermore, all subproblems on the l i s t  with lower 
bounds greater than the new incumbent are deleted from 
the l ist .  If the subproblem cannot lead to a feasible solution 
it is deleted. Finally, the subproblem is inserted back on the 
l i s t  if it is not presently feasible and i t s  lower bound i s  less 
than that of the incumbent. The algorithm continues by 
selecting another subproblem from the list. The algorithm 
terminates when the list becomes empty. 

We consider two parallel implementations of the fore- 
going B&B algorithm on hypercube multiprocessors. The 
first implementation, referred to as the Central List  (CL) 
algorithm, consists of two major components: a master pro- 
cess which runs on the host and N slave processes which 
run on the nodes of the hypercube. The master process 
maintains the l i s t  of active subproblems and th. incum- 
bent, selects N subproblems from the list, and assigns one 
subproblem to  each slave process. The N subproblems 
selected have the best bounds among the active subprob- 
lems. Each slave process then expands i t s  subproblem, gen- 
erates children subproblems and calculates their lower 
bounds. It also performs the lower bound, feasibility, and 
termination tests on the subproblems it generates. The 
results are then sent back to the master process, which 
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inserts them on the list. The algorithm terminates when the 
list of active subproblems becomes empty and all the slave 
processes are idle. 

The CL algorithm has the advantage of expanding sub- 
problems whose bounds are the best globally. This is 
advantageous because subproblems that have smaller 
lower bounds are more likely to lead to solutions than oth- 
ers that have larger lower bounds. The algorithm, however, 
has some serious disadvantages. It requires two commu- 
nication messages for each subproblem expansion. The first 
i s  required to send the subproblem from the host to the 
node for expansion. The second is needed to carry the newly 
created subproblems from the node to the host. Com- 
munication with the host becomes a bottleneck that 
reduces the performance of the algorithm. 

The second B&B implementation, known as the Distrib- 
uted List (DL) algorithm, attempts to put the resources of 
the hypercube to better use that the CL algorithm by dis- 
tributing the list of active subproblems and a copy of the 
incumbent across the processing nodes. It employs N + 1 
processes, each maintaining its own subset of the list. A 
supervisor process initiates the computation by generating 
N subproblems and assigning one to each of the remaining 
N processes. Each process then expands subproblems from 
its local list. It also performs the lower bound test, the fea- 
sibility and termination tests, and inserts the results back 
on its local l is t .  

In our implementation on an NCUBE/ten [60], [61] the host 
runs the supervisor process while each of the N processing 
nodes run one of the other processes. A mechanism i s  
employed by which the load can be balanced and the sub- 
problems distributed across the processes. When a process 
becomes idle it requests subproblems from neighboring 
processes in  the system. The process that receives the 
request examines its own list of active subproblems and 
either sends a portion of it to the requesting process or den- 
ies the request i f  its own list i s  too small to divide. In our 
implementation, a processor requests subproblems from 
one of its neighbors in the hypercube. It sends one half of 
its subproblems to an idle processor requesting subprob- 
lems. 

Because the DL algorithm maintains multiple copies of 
the incumbent, processes can find feasible solutions inde- 
pendently and update their own incumbents. In the DL 
algorithm, once an incumbent i s  updated, its new value i s  
broadcasted to al l  other processe's. Figure 11 shows the 

1 4 1 6  6 4  

PROCESSORS 

Fig. 11. Speedup of the CL and DL algorithms on the 
NCUBEiten. 

speedup measured for the two algorithms for various 
hypercube sizes. In the CL algo-ithm, the speedup i s  rea- 
sonable for up to 16 processors. Little is gained by increas- 
ing the number of processors beyond that. This can be 
attributed to host-to-node comm unication overhead which 
increases as the cube size increases, and to load imbalance 
resulting from communication celays. The performance of 
the DL algorithms shows that i distributed-list approach 
has better performance than 1he CL algorithm. This is 
expected since there i s  no bott eneck in communication; 
the communication bandwidth of the hypercube i s  utilized 
more efficiently. The performan1:e of the two algorithms on 
a64-process hypercube i s  comp ired to the performance of 
the corresponding serial algorithm on the VAX 11/780 and 
the IBM 3090 (single processor) in Fig. 12. 

EXECUTION ' W E  (SEC) 
-3 - 

VAX IEM 30911 CL DL 
111780 NCUEElten 

Fig. 12. Execution time for various systems. 

VI. DISCUSSION 

As we have seen, hypercube t~ ultiprocessors are the real- 
ization of a concept that has beeii studied from a theoretical 
viewpoint for nearly 30years. Th 'y represent one of the first 
applications of massive parallidism to commercial com- 
puters. Most of the current hype rcubes can attain peak per- 
formance levels approaching i hose of traditional vector 
supercomputers. Success in  .caching these levels for 
important practical applications has demonstrated not only 
theviabilityof hypercube super:omputers, but alsothefea- 
sibility of massively parallel distributed-memory com- 
puters, in general. In particulzr, the assumptions under- 
lying Amdahl's law' which places severe limits on the 
achievable speedup due to parallelism, are now seen as not 
applying to hypercube-class machines as they do to con- 
ventional vector architectures 521. 

Nevertheless, several factors still make it difficult to 
achieve supercomputing perfo -mance with current hyper- 
cubes, including the small meniory capacity and I/O band- 
width available in many of these machines. Most important, 
however, i s  the different style of programming required for 
hypercubes and other distributed-memory machines. It i s  
not possible now to take an 01 j sequential program (a so- 
called "dusty deck") and execute it directly on a hypercube 
computer. Such programs m Jst be restructured, often 

'Amdahl's law states that the spe ?dup Sof an n-processor system 
is n/(l + (n - I j f ) ,  where fdenotes :he fraction of nonparallelizible 
operations. Thus, no matter how large n becomes, S can never 
exceed l l f .  
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extensively, in order to achieve reasonable speedups. There 
are presently no “parallelizing” compilers or the like for 
automatic program restructuring, comparable to the vec- 
torizing tools available for pipelined supercomputers. The 
design of automatic parallelizers for hypercubes, now in 
the early stages of research, is  likely to  provide a major 
impetus to the use of hypercube computers outside the sci- 
entific and research community, which accounts for most 
current hypercube usage. In addition, more user-friendly 
program development environments, standards for par- 
allel programming languages and operating systems, and 
shareable software libraries are all likely to have a major 
positive influence on the use of these machines. 

The rapid technological developments in VLSl that made 
hypercube computers feasible in the first place can be 
expected to continue to  reshape these machines and lead 
to further improvements in their performancekost ratio. 
New IC technologies will undoubtedly allow more pow- 
erful processors, larger memories, and more sophisticated 
interconnection techniques to be incorporated into future 
hypercubes. The most profound changes in the architec- 
ture of these machines seem likely to occur in their inter- 
connection technology. The introduction of fast node-to- 
node routing circuits makes a hypercube computer seem 
to a programmer like a completely connected system in 
which each node i s  directly connected to  all others, i.e., all 
nodes are neighbors. In such an environment, essentially 
any application graph can be embedded efficiently into the 
computer provided a sufficient number of nodes are avail- 
able. This development i s  likely to  expand the range of 
applications that can use these machines and to simplify 
their programming. If this occurs, then the hypercube wil l  
appear as merely the internal skeleton of an extremelygen- 
era1 and flexible computer of essentially unlimited poten- 
tial. 
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