
Hypercube Supercomputers

JOHN P. HAYES, FELLOW, IEEE AND TREVOR

The architecture and applications of the class of highly parallel
distributed-memory multiprocessors based on the hypercube
interconnection structure are surveyed. The history of hypercube
computers from their conceptual origins in the 1960s to the recent
introduction of commercial machines is briefly reviewed. The
properties of hypercube graphs relevant to their use in supercom-
puters are examined, including connectivity, routing, and embed-
ding. The hardware and software characteristics of current hyper-
cubes are discussed, emphasizing the unique aspects of their
operating systems and programming languages. A sample C pro-
gram is presented to illustrate the single-code multiple-data pro-
gramming style typical of distributed-memory machines in gen-
eral, and hypercubes in particular. Two contrasting hypercube
applications are presented and analyzed: image processing and
branch-and-bound optimization. The paper concludes with a dis-
cussion of current trends.

I. INTRODUCTION

Parallel processing seeks to improve the speed with which
a computation can be done by breaking it into subparts and
concurrently executing as many of these as possible. The
past few years have seen the emergence of commercial
computers that employ hundreds of processors working in
parallel to achieve the level of performance previously
found only in multimillion-dollar supercomputers [I]. In
many of these ”massively” parallel machines, the proces-
sors are connected in a regular pattern called a hypercube.
By using hundreds of low-cost microprocessors, the cost
of these unconventional multiprocessors can be kept rel-
atively low, putting them within reach of the single user.
At the same time, extremely high computing performance
can be achieved. To emphasize these points, one manu-
facturer has called its hypercube product a “personal
supercomputer” [2]. This paper explores the origins, archi-
tecture, and applications of hypercube-based multipro-
cessors with performance at the supercomputer level.

The parallel computers of interest here consist of many
processors and memory units which communicate via an
interconnection network. The latter can range from a single
shared bus to a complex multistage interconnection net-
work [3]. Of particular significance in determining system

Manuscript received August 5 , 1988; revised June 5 , 1989. This
work was supported by the Office of Naval Research under Con-
tract N00014-85-K-0531, by DoD Contract MDA904-87-C-4136, and
by NSF Contract MIP-8802771.

The authors are with the Advanced Computer Architecture Lab-
oratory, Dept. of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI 48109-2122, USA.

IEEE Log Number 8933020.

MUDGE, SENIOR MEMBER, IEEE

performance i s the manner in vihich the processors com-
municate with the memory subsystem. Two major
approaches are found in contemporary parallel computers.
The shared-memory approach employs a single central
memory unit to which all proce!,sors have direct and rapid
access. Contention for this shared memory, however, can
result in serious performance lo is. An alternative approach
i s to provide each processor with a local memory to which
other processors have slow and indirect access. Such a dis-
tributed-memory scheme simplifies the interconnection of
massive numbers of processors, but raises new problems
in communication efficiency.

Most recently introduced m Jltiprocessors have a few
dozen processors connected to a shared memory over a
common high-speed bus. Exaniples are the Sequent Bal-
ance [4] and the Encore Multimax [5] . Another class of
shared-memory multiprocessors are massively parallel
machines that provide a connection from each processor
to a large multiport shared meniory. Examples are the BBN
Butterfly [6], one of the few comniercially available machines
in this category, and the RP3, an experimental machine
developed at IBM [7]. A key featiire of these machines is the
omega-type multistage intercorinection network that con-
nects the processors to the sh: red memory [8].

Massively parallel multiprocessors are typically of thedis-
tributed-memory variety to avo d the contention problems
associated with hundreds or thousands of processors shar-
ing a very large global memory. Zommunication among the
processors, however, requires i n efficient interconnection
network. Many proposals for such networks have been
made, including meshes, pyri mids, and multistage net-
works of the type mentioned akove. Given the large variety
of these proposals, it i s intere<,ting to note that the over-
whelming majority of current commercial massively par-
allel machines are hypercube-(onnected.

Distributed-memory multip-ocessors such as hyper-
cubes eliminate most of the at:cess contention problems
associated with a large shared inemory. They do so by par-
titioning the system memory i i t o smaller local memories
that are distributed among the available processors. Com-
munication among these local memories then becomes a
major design issue, since a ri4atively slow input-output
operation i s needed to access shared data assigned to a
nonlocal memory. Such accessc!s take the form of messages
passed between the local memzwies of the two processors.
The management of this message-passing has major impli-
cations on all aspects of the slistem design, as well as on

0018-9219/89/1200-1829$01.00 0 1989 IEEE

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 12, DECEMBER 1989 1829

applications software design. For example, a high-perfor-
mance switching network or special interprocessor com-
munication software (which usually is a part of the oper-
ating system resident in each node) i s necessary. In addition,
old algorithms must often be extensively restructured, as
we will see later, to execute efficiently in the parallel envi-
ronment created bythese machines. This restructuring has
also led to major extensions to traditional programming
languages.

A hypercube i s a generalization of the 3-dimensional cube
graph to arbitrary numbers of dimensions. Just as a 3-
dimensional cube has 23 nodes (vertices), so an n-dimen-
sional cube has N = 2" nodes. Similarly, each node of a 3-
cube has 3 edges (links) connected to it, and each node of
an n-cube has n edges connected to it. Hypercube multi-
processors take this simple topology and use it to define
the interconnection pattern among 2" processors. Proces-
sors are placed at the nodes of the cube and are connected
by links along the edges. Figure 1 illustrates hypercubes for
small values of n.

0
I 1 = 0 n = l

n = 2 n = 3

01 IO

I
,

n = 4
Fig. 1. Hypercubes for n = 0, 1, 2, 3, 4.

1830

Hypercube topology has several attractive features. First,
it is homogeneous or node-symmetric in the sense that the
system appears the same from each node: There are no
edges or boundaries where nodes may need to be treated
as special cases. The hypercube achieves a good balance
between the number of internode links used and their cost.
It employs n N / 2 links to connect N = 2" nodes, and each
node processor has n links to manage. In all but afew recent
hypercubes, nodes not directly connected must commu-
nicate via messages sent through intermediate nodes in
store-and-forward fashion. The hypercube topology guar-
antees that no two nodes are more than n links apart. In
addition, other useful computational structures, most nota-
bly meshes of arbitrary dimensions, can be embedded in
a hypercube in such a way that adjacent nodes in the orig-
inal structure are also adjacent in the hypercube. Thus for
a wide class of useful applications, especially in scientific
computing, the delays associated with interprocessor com-
munication fall within acceptable limits. Another key factor
in making hypercube computers practical from a com-
mercial viewpoint i s the fact that they can now be built eco-
nomically with low-cost off-the-shelf microprocessor com-
ponents[9]. Other proposalsfor massively parallel machines
often require complex, expensive, and specially designed
chips if they are to contain a reasonable number of inte-
grated circuits (ICs). This i s a more serious restriction than
it might first appear, since a component count of more than
a few tens of thousands of ICs puts air-cooled systems at
the upper limits of acceptable reliability, regardless of the
complexity of the subsystem within each IC.

The next section gives a brief history of hypercubes and
outlines the main features of hypercube architectures. Sec-
tion I l l discusses the structural properties of hypercubes
and their influence on system design and application. Soft-
ware design issues and a representative hypercube pro-
gram are presented in Section IV. Section V examines two
typical applications in depth: image processing and branch-
and-bound optimization. Section VI concludes the survey
with a brief discussion on current status and trends.

I I. HYPERCUBE COMPUTERS

The earliest study of hypercube computers was pub-
lished by Squire and Palais of the University of Michigan
in 1963. Their stated goal was to design a computer "where
the emphasis i s on the programmability of highly parallel
numerical computations," with hardware cost a secondary
consideration [IO], [I l l . Among the reasons they cite for
selecting the cube organization are the ease with which
paths between nonadjacent nodes can be determined, and
the fact that all nodes are identical and interchangeable.
The proposed 12-dimensional (4096-node) Squire-Palais
machine was estimated to require 20 times the hardware
of the IBM Stretch, the largest supercomputer of the day,
but a speedup of at least 100 was anticipated.

With the advent of the single-chip microprocessor in the
early 1970s, several other proposals for microprocessor-
based hypercubes were made. In 1975 IMS Associates, a
manufacturer of personal computers, announced a 256-
nodecommercial hypercube based on the Intel 8080 micro-
processor, but it was never produced [12]. In 1977, Sullivan
and his colleagues at Columbia University presented a pro-
posal for a large hypercube called the Columbia Homo-
geneous Parallel Processor (CHOPP), which would have

PROCEEDINGS OF THE IEEE, VOL. 77, NO. 12, DECEMBER 1989

contained up to a million processors [13], [14]. Also in that
year, Pease published an important study of the “indirect”
binary n-cube architecture, for which he suggested a mul-
tistage interconnection network of the omega type for
implementing the hypercube topology [15].

High hardware cost was clearly a major reason why these
early hypercube designs were never implemented. The
appearance of high-performance 32-bit microprocessor
chips and dynamic RAM chips in the 1 M-bit range in the
early 1980s made it economically feasible to construct prac-
tical hypercube computers of moderate size. The first such
machine was the 64-node Cosmic Cube built by Seitz and
hiscolleaguesat Caltech,which becameoperational in 1983
[16]. This pioneering machine employed processor nodes
based on the commercial Intel 8086/8087 microprocessor
family. The Cosmic Cube was applied successfully to a vari-
ety of numerical computation tasks, often yielding signif-
icant speedups compared to conventional computers of
similar cost. It was also the first of a series of experimental
hypercube computers developed at Caltech [17], [I81 and
provided the main inspiration for the first generation of
commercial hypercube computers.

In July 1985, Intel delivered the first production hyper-
cube, the Intel Personal Supercomputer, or iPSC, which h a s
a 80286/80287 CPU as its node processor and up to 128
nodes. Assuming a peak performance of 0.1 million float-
ing-point operations per second (MFLOPS) per node, the
128-node iPSC has a potential or peak throughput of about
12 MFLOPS. (Note that a traditional vector supercomputer
such as the Cray-1 has a peak throughput of 160 MFLOPS).
Two other commercial hypercubes were introduced in 1985:
NCUBE Corporation’s NCUBE/ten and System 14/n from
Ametek (subsequently Symult Systems). The System 14/n
hypercube has up to 256 nodes, each employing an 802861
80287-based CPU similar to that of the iPSC, and an 80186
microprocessor for communication management. The
NCUBE/ten can accommodate up to 1024 nodes, each based
on a VAX-like 32-bit custom processor with a peak perfor-
mance of around 0.4 MFLOPS. Thus, a fully configured
NCUBE system hasa peakthroughput of about400MFLOPS.
This high performance level i s supported by extremely fast
communication rates (both input/output and node-to-
node), makingthe fullyconfigured NCUBEiten atruesuper-
computer. In 1988, researchers at Sandia National Labo-
ratories using a 1024-node NCUBE/ten were the first to meet
the widely publicized challenges posed by A. Karp and
C. C. Bell to demonstrate the successful application of mas-
sive parallelism to large-scale practical problems in sci-
entific computation [19]-[21]. This work, and that of many
others, demonstrates convincingly that a properly pro-
grammed N-node hypercube can provide linear speedup-
execution speeds that increase in proportion to N-for a
wide range of computation problems.

Several new hypercubes with supercomputing perfor-
mance have been built or announced since 1985, including
the Caltech/JPL Mark Ill [18], the Floating Point Systems T
Series[22], and the Intel iPSC/2[23]. Someof these machines
incorporate pipelined vector processors in their nodes, a
feature of most earlier supercomputers. In some instances,
they also employ special routing circuits to allow direct
communication paths to be established between nonad-
jacent nodes. The second-generation Intel iPSC/2, for
instance, has avector-processing capability, as well as a cir-

cuit-switching internode com nunication network to
replace the slower store-and-for Nard technique [24]. Peak
performance figures in excess of 1000 MFLOPS (1 CFLOPS)
are cited by the manufacturers o these newer hypercubes.
The new communication hardware has reduced the time
to pass a message between two nodes from a few milli-
seconds toafew microseconds. I i fact, by effectively reduc-
ing the distance between all pai s of nodes to a small con-
stant, a programmer can view the system as a pool of
processors with a complete set of node-to-node connec-
tions. As a result, the requiremer t that the application algo-
rithms have a hypercube-like cc mmunication structure is
diminishing in importance. Furt iermore, it raises the pos-
sibility of implementing a share j-memory architecture on
a hypercube platform.

A few other recent supercoinputers employ architec-
tures that have been heavily inf uenced by the hypercube
concept. The Connection Machine series manufactured by
Thinking MachinesCorporation employs up t02 ’~o r 65 536
simple processing nodes [25]. Sixteen nodes are placed on
a chip with switching circuity t iat allows any node to be
directly connected to any other node on the chip. The 2”
chips of the Connection Machiiie form the nodes of a 12-
dimensional hypercube. The second-generation, CM-2
model of the Connection Mach ne announced in 1987 has
a peak performance target of 2.5 GFLOPS [25]. The Symult
Systems 2010 introduced in 198t’ has up to 256 nodes inter-
connected as a toroidal mesh vihich, as we will see later,
is closely related to a hypercube [26].

The basic architecture of a hy3ercube node processor i s
shown in Fig. 2. It is a self-conta ned computer with a CPU,

Bidirectional links to other nodes a i d external 110

r

I/O Channels

t t t t

I I Local
Memory

U I

Fig. 2. Architecture of a typical ncde processor.

local memory for programs anc data, and an input/output
(I/O) subsystem. its main distirguishing feature is the set
of bidirectional I/O channels ihat link the node to its n
immediate neighbors in the hypercube. These channels are
used for interprocessor messag,e passing and are typically
implemented as bit-serial links with direct memory access
(DMA) to the local memories of i he nodes being linked. Pro-
cessors not directly connected to one another by 1/0 links
can communicate via intermediate nodes, which relay mes-
sages between the source ancl destination nodes. Addi-
tional links may be provided to connect each processor to
a host computer and I/O devic2s such as secondary (disk)
memories; in some instances i II access to the I/O system
i s via the host computer. The hast acts as a general system
supervisor providing such opc.rating system functions as

HAYES AND MUDCE: HYPERCUBE SUPERCOMPUTERS 1831

I/O management, as well as program editing and compi-
lation facilities.

Communication issues play a central role in the archi-
tecture and performance of hypercubes and, indeed, of all
distributed-memory computers. Hypercubes are typically
configured so that the nodes execute the same application
program on different data sets. Each node's program and
data are stored in its local memory, so that most compu-
tation is within the individual nodes. When two nodes need
to share information-for example, to exchange results-
the shared data must be inserted in a message which i s
transmitted via a series of I/O transfers, possibly involving
other nodes. The delay required for a node to obtain a data
item in this fashion from one of i t s immediate neighbors
is perhaps 1000 times the delay incurred when accessing
data in the node's local memory. Thus great pains are taken
to design hypercube application programs to minimize the
need for message-passing, and to confine unavoidable
message-passing to adjacent or nearly adjacent nodes.

The earliest hypercubes used store-and-forward com-
munication schemes, which required of the order of 1 ms
to transfer a message between adjacent nodes; k separate
transfers or "hops" are necessary when source and des-
tination are k links apart. Improvements in the efficiency
of the message-passing software can reduce this delay by
a factor of 10 or so [27]. However, to reduce the delay to a
level comparable to the local memory access time (1 ps or
less), hardware routing circuits have been devised. The
Torus routing chip [28] and the Hyperswitch used in the JPL
Mark I l l hypercube are examples of these [29].

The routing circuits proposed for hypercubes resemble
crossbar switching networks and provide direct (circuit-
switched) connections between arbitrary pairs of I/O chan-
nels associated with a single node. This permits a message
to pass from source S to destination Dwithout being stored
at intermediate nodes. In effect, a direct high-speed circuit
i s established between Sand D. Provided they do not con-
tend for the same links, several separate circuits can pass
through the same routing switch. A number of strategies
have been devised for dealing with contention when it
occurs. The "wormhole" approach of Dally and Seitz [28],
versions of which are used in iPSC/2 and the Symult Sys-
tems 2010, allows a blocked message to retain control of the
routing circuitry up to the blockage point: It i s queued in
the network until the blockage clears. Alternative "adap-
tive" strategies to the wormhole approach used in con-
junction with the Hyperswitch attempt to find a free path
around a blocked node [29]. Finally, there is a class of rout-
ing strategies that are adaptive only on their first hop as the
message leaves S[30]. These reduce the likelihood of block-
age and simplify deadlock avoidance, a concern with adap-
tive routing [31].

A hypercube computer i s managed by an operating sys-
tem (OS) which resides mainly in the host machine. The OS
management functions peculiar to hyperrubes include
allocation of subcubes of nodes (smaller hypercubes
formed byasubset of theavailable nodes)to multiple users,
loading programs into the nodes (often done by a broad-
casting operation), and managing processor-processor and
processor-l/O corn m u n ication. Corn m u nication functions
such as message storing and forwarding may be assigned
to the hypercube nodes in the form of a small node-resident
OS kernel. It should be noted that node processes are

*

inherently asynchronous, so that any necessary synchro-
nization among processes in different nodes must be taken
care of by the OS.

Because of the large numbers of nodes that may be
present, packaging considerations are also very important
in hypercube design in order to keep physical size, power
consumption, and cooling needs within reasonable limits.
The Connection Machine employs simple I -b i t processors
and i s therefore able to accommodate 16 node processors
on a single custom IC. Thirty-two of these chips, their mem-
ories (4K bits per processor), and internode communication
circuitry are placed in a single printed circuit board. Most
commercial hypercube machines employ conventional
32-bit processors with much larger and expandable local
memories. In a more typical case such as the Intel iPSC, the
node consists of one or two small boards with several mega-
bytes of local memory. An intermediate case represented
by the NCUBElten has a 7-chip node comprising a custom
32-bit microprocessor chip and six memory chips with a
combined storage capacity of 0.5 M B . Sixty-four nodes can
be placed on a large (16 x 22-in.) board; however, this for-
mat does not allow for memory expansion. Figure 3 shows

Fig. 3. 64-node NCUBElten processor board.

a 64-node NCUBElten processor board, which functions as
a 6-d i mens ional hypercube.

Ill. STRUCTURAL PROPERTIES

The graph properties of hypercubes that are relevant to
their use in supercomputers [32], are examined next. An n-
dimensional hypercube graph Q, can be defined recur-
sively as follows:

Qi = K2

Q n = K, X Qn-7

where K2 is the 2-node complete graph, and x denotes the
Cartesian product of graphs. This definition implies that Q,
contains many subcubes of smaller dimensions, a property
that may be exploited in several ways. For example, a hyper-
cube Q, can accommodate multiple users simultaneously
by assigning each user a disjoint subcube Qk within Q,,
where k 5 n. Furthermore, a measure of fault tolerance can

1832 PROCEEDINGS OF THE IEEE, VOL. 77, NO. 12, DECEMBER 1989

be achieved by assigning to users only those subcubes that
exclude known faulty nodes.

Q, contains N = 2" nodes of degree n, and n2"-' edges.
Thus, as the number of nodes N i s increased to improve
performance, the connection requirements of each node
increase at a rate proportional to n = log, N. This implies
that practical limitations on the number of links per node
can be met while allowance is made for the increased com-
munication needs of a larger hypercube. Each node of Q,
is at distance one from n other nodes. The maximum inter-
node distance or diameter of Q, is n, which therefore
defines the worst-case communication delay. The average
internode distance i s (n2"-')/(2" - I), which rapidly
approaches n/2 as n i s increased.

The nodesof Q, may easily belabeled withn-bit addresses
insuchawaythat nodesadjacentin theithdimensiondiffer
only in the ith address bit (see Fig. 1). The resulting set of
2" addresses {OO..O, 00. . I , . . . ,11. . I } facilitate the imple-
mentation of key communication algorithms, including
node-to-node routing and broadcasting from one node to
the entire hypercube. Two basic programs for this purpose
appear in Fig. 4. A copy of each is assumed to reside in every
node of the hypercube as part of its resident OS. The pro-
gram i s executed whenever a message i s generated locally
or is received from another node for routing or broad-
casting. The same basic communication algorithms are also
implemented in the circuit-switching hardware discussed
in Section I I .

Figure 4(a) gives the basic node-to-node routing algo-
rithm ROUTE which always selects a minimum-length path

procedure ROUTE;
begin

for next message from s , - ~ J ~ . ~ . . . S ~ to d,-, d, -,... & do
begin

zn.i z , . 2 ... zn := (sn-i @ dn-~)(sn-z @ 4 - 2 1 ... (so @ 4,);
for I := 0 to 11-1 do

if zI = 1 then begin

end:
send message to i-th neighbor; exit;

end;
end

(a)

procedure BROADCAST;
begin

if the current node IS the source then C := 11 ... 1

for I := 0 to n ~ 1 do

ct := 0;
send message and C to i-th neighbor;

else receive message and control word C = C . . , C , ~ ~ . . . Q ;

i f c, = 1 then begin

end;
end.

(b)
Fig. 4. Hypercubecommunication algorithms. (a) Node-to-
node routing. (b) Broadcasting.

between the source node S = S,-,S,,-, . . . so and the des-
tination node D = dn-ld,-z . . . do. ROUTE first computes
X = S 0 D where 0 denotes the bitwise EXCLUSIVE-OR
operation. It then scans X in a fixed direction, say, left to
right. If ROUTEencounters somex, = 1, it transmits thecur-
rent message to its immediate neighbor along the i th
dimension of Q, (its i th neighbor). If X = OO..O, then the
current node must also be the destination, and the message
is retained for processing. By transmitting the message to
a node whose i th address bit i s 1 whenever it encounters

x , = 1, ROUTE ensures that the ROUTE program in all sub-
sequent nodes will find x, = 0. Hence the message i s always
sent closer to the destination. It therefore travels the min-
imum possible distance from S t3 D, which is the number
of ones in S CB D. An alternative routing algorithm devel-
oped by Valiant [33] routes each rnessage to a randomly cho-
sen node; from there the messag,e is forwarded to its orig-
inally intended destination. The randomization assures that
message congestion at nodes will be dispersed. Unfortu-
nately, Valiant's router does nclt perform as well as the
straightforward algorithm in many routine parallel pro-
cessing tasks, and its more 1:omplex implementation
requirements have discouraged its use.

A basic broadcasting algorittim, BROADCAST, i s pre-
sented in Fig. 4(b). Assuming th,it each node can transmit
themessagetoonlyone neighboratatime,and thatasingle
messagetransmission takes time T, BROADCASTallows the
message to be sent to all nodes ill time n7, which i s the min-
imum possible. A control word (:is transmitted along with
the message, and serves to tell each receiving node the
dimensions along which it shou d retransmit the message.
The first node S transmits the nessage and (and C) to a
neighbor T in the first time per od. I n the second period,
both S and T retransmit the message to two more nodes,
and so on. Hence the number i f copies of the messages
being transmitted in successive time periods i s 1, 2, 4,
. . . , 2"- 'so that all nodes are reached within n periods.
Faster broadcasting can be achieved if a node transmits sev-
eral copies of the message simiiltaneously.

Hypercubes have avery regul'ir structure, which has sev-
eral practical implications. As noted in Section I, they are
homogeneous in the sense that the system structure looks
the same from every node. In grilph theoretic terms [34], Q,
i s symmetric, meaning that every pair of nodes or lines can
be interchanged without altering the graph structure. This
property, combined with the f,ict that Q, contains many
easily identified subcubes of dimensions smaller than n,
leads to the following conclusiams.

1) A program can readily be cesigned to run unchanged
on a hypercube of any dimen*,ion k 5 0 by making k a
parameter of the program. Thus program development can
beconductedonasmall subcub.,e.g.,onewith n = 2,while
production runs can be executed by a larger hypercube.

2) A large hypercube computer can be efficiently shared
by multiple users, each of whor l i s assigned a disjoint sub-
cube by the OS. Such a scheme s implemented by the AXIS
operating system of the NCUBElten, which allows a user to
specify the dimension k of a de ;ired hypercube. AXIS then
allocates a Q k from among the zvailable free nodes, if it can
find one. Several efficient methods for handling arbitrary
sets of subcube allocation recluests have recently been
developed [35]. The subcube Clk of Q, can be viewed as a
logical entity which can be relocated anywhere in Q, by
EXCLUSIVE-ORing the address of each node in Qk with the
address of the node in Q, chosen as the logical origin.
Broadcasting, and message trar sfers in general, can be per-
formed using the logical nodt addresses. This simplifies
many message transfer algoritlims.

Hypercubes have many attra:tive and useful embedding
properties, some of which havc been studied by graph the-
orists for more than 20 years [?6]. An (isomorphic) embed-
ding of G into G' i s a one-to-orle mapping I$ of nodes of G
onto nodes of G', such that if :U, 11) i s an edge of G, (+(U),

HAYES AND MUDCE: HYPERCUBE SUPERCOMPUTERS 1833

@ (U)) is an edge of G’. G is termed cubical if it has an embed-
ding in the hypercube Q,, for some n. Among the useful
graphs that are cubical are trees (cycle-free graphs) and
meshes of any dimension. The latter result is especially
important since many large-scale numerical problems have
data structures defined on d-dimensional meshes. Their
solution-for example, by relaxation methods-requires
efficient communication between neighboring nodes on
the mesh. Thus, to solve such mesh-oriented problems on
a massively parallel computer, it i s very desirable that
meshes be isomorphically embeddable into the structure
of the host computer. This i s underscored by the fact that
at least one hypercube manufacturer has also introduced
a product with a mesh rather than a hypercube intercon-
nection structure [26].

Figure 5 illustrates how a 2-dimensional 4 x 4 mesh can
be embedded in Q4; the labels assigned to the mesh nodes

n n n n

Fig. 5. A 4 x 4 mesh labeled for isomorphic embedding in
Q4.

correspond to the hypercube node labels in Fig. 1. Note that
Q4 can also accommodate a toroidal 4 x 4 mesh in which
the edge nodes are connected in end-around fashion, as
indicated by the dotted lines in Fig. 5. In general, ad-dimen-
sional nontoroidal k , x k , x . . . x kd mesh M can be
embedded in a hypercube Q,, of dimension n 2 [log,
k , l . If the dimension n of the available hypercube com-
puter is too small, a mesh problem can often be partitioned
efficiently into smaller mesh problems, each of which can
be solved separately on the hypercube. An embedding of
the k , x k2 x . . . x kd mesh M into Q, can easily be
obtained by labeling the nodes of M so that the sequence
of sublabels assigned to each dimension forms a Gray code
[36]. For example, the nodes of the 4 x 4 mesh in Fig. 5 have
labels alaoblbo in which alaO and b,bo assume the values G
= 00,01,11,10along thevertical and horizontal dimensions
of the mesh; G i s a 2-bit reflected Gray code.

IV. SOFTWARE

The emergence of the commercial hypercube computer
has demonstrated the feasibility of constructing low-cost
massively parallel machines. The focus of research can now

be expected to shift to the issue of how these machines can
be programmed effectively. Indeed, a recent study con-
cludes that the lack of appropriate parallel programming
languages and software development tools i s the single big-
gest impedimenttothewidespread useof parallel machines
[37]. The operating system is also a major factor, as memory
management, interprocess communication and other OS
functions are critical to overall system operation. Three
major software issues must be considered: the operating
system used for developing application programs; the run-
time operating system in the hypercube nodes, and the set
of application programming languages to be used.

High-order parallel programming languages and support
tools are essential if users of parallel systems are to develop
machine-independent concurrent software [38]. Such soft-
ware will hasten the day when reusable software becomes
a reality for parallel machines, as it now is for conventional
uniprocessors. The programming of hypercubes i s nor-
mally done by writing a separate program to run on each
processor. The programs communicate by low-level mes-
sage-passing operations provided by the OS and available
to the programmer through extensions to a sequential lan-
guage such as C or FORTRAN. Typically, these programs are
copies of a single program. The distinct copies will execute
correctly regardless of their location in the hypercube. This
style of programming is referred to as single code multiple
data (SCMD) or single program multiple data (SPMD).

Two major problems with the SCMD style of program-
ming are the lack of type checking in internode commu-
nications and the machine dependence of the code. These
problems can be solved by using a suitable parallel lan-
guage, that is, one whose units of concurrency are distrib-
uted across the processors and executed simultaneously.
To be effective, such languages should be able to perform
type checking across processor boundaries, provide lan-
guageconstructs for interprocess communications that can
also function across processor boundaries, allow data shar-
ing between processes to be specified at the language level,
and provide for synchronous creation and termination of
processes within a program. Languages that meet these cri-
teria are discussed in [391-[42].

UNlX providesan attractive OS environment for software
development on both sequential and parallel machines. As
a result, it i s supported (in several different versions) by most
of the hypercube manufacturers. The NCUBEiten, for exam-
ple, has a UNIX-like operating system called AXIS [9]. It pro-
vides the normal UNlX utilities for editing, debugging, and
resource management which treat most system resources
as files. The NCUBE/ten incorporates up to eight I/O sub-
systems to meet the high I/O bandwidth requirements of
a supercomputer. These are organized, under AXIS, as one
distributed file system to avoid having to deal with multiple
separate file systems. AXIS manages a hypercube as a device
file that can be opened, closed, and so forth, as if it were
a normal file. It permits users toallocate subcubes that have
the approprite dimension for their application. Thus, one
or two users with large problems or several users with small
problems may share the hypercube. This flexibility greatly
increases the system efficiency and gives a hypercube
supercomputer a significant advantage over conventional
supercomputers. Partitioning the main hypercube into
subcubes i s simplified in that each subcube i s easily iso-
lated logically from all other subcubes. A small OS nucleus

1834 PROCEEDINGS OF THE IEEE, VOL. 77, NO. 12, DECEMBER 1989

called VERTEX is resident in each of the NCUBE/ten nodes.
Its primary function i s t o provide communication between
the nodes. It achieves this by, among other facilities, send
and receive operations that transfer messages between any
two nodes in the hypercube, using the ROUTE algorithm
of Fig. 4(a), and by a "whoami" operation that allows a pro-
gram to determinewhich logical node it is executing on and
which I/O processor it i s connected to.

We conclude this section with a sample SCMD program
that calculates the maximum element of a vector of num-
bers v. More formally, the program calculates,

S = max v[i]
I d r z K

001
002
003
004
005
006
007
008
009
010
011
012
013
01 4
015
01 6
01 7
018
010
020
021
022
023
0 2 4
025
026
027
028
029
n3o
031
032
033
034
035
036
037
038
039
0 4 0
041
042
043
044
0 4 5
046
047
048
049
050
051
052
053
054

whereK= n . 2d'm,nisthenumb2rofelementsofvineach
node of the cube, and dim i s the dimension of the cube.
A listing of the program, which i s written in a parallel exten-
sion of the C language, appears ir l Fig. 6. This particular pro-
gramming language i s NCUBE'! version of C, but other
hypercube manufacturers use s milar extensions to C (cf.
Intel [43]). The extensions to C include internode send and
receive operations implementetl as function calls nwrite
and nread, respectively; and the whoami operation imple-
mented by the function called Nhoami. These functions
are part of the OS resident in the hypercube nodes. We
assume that a copy of this program has been loaded into
each of the nodes of a particulars ubcube that has been allo-

/ * NODE PROGRAM TO CALCULATE THE MAXIMUM OF A VECTOR v

P" : caller's logical processor number in subcube
proc : process number in node
host : node on Host for cube communication
dim : dimension of allocated cube * /

whoami (&pn, bproc, hhost, &dim) ;

/ * Receive vector of length n from the host; VECLEN ia the
possible length of the vector. (4 bytes per vector element) */

cf = 0;
type = DATA;
n = (nread((char *)v,VECLEN*4, Chost, &type, &cf) /4) ;

/* Find m, ths local maximum of v in this node * /

m = MINF;
for (i = 0 ; i < n ; ++i) if (v[il > m) m = v[il;

for (i = dim ; i > 0 ; --i) (

/* Execute once f o r each axis of the hypercube */

if (pn < power(2,i)) (

/ * If this node is in the active part of the collapsed cube,
do the computation below, otherwise the node is done.
npn is the neighbor of pn on the i-th axis * /

type = MAX;
npn = pn"power(2, (i-1));
if (npn < pn)

/* If neighbor's number is less, send the local maximum; otherwise
receive it and update its value. /*

nwrite((char *)&m,4,npn,type,&cf);

nread((char *) 6rm, 4, &npn, &type, hcf) ;
if (rm > m) m = rm;

else (

1

1

/* send the final result back to the host */

if (pn == 0) {
type = RESULT;
nwrite ((char *) &m, 4, host, type, &cf) ;

1
Fig. 6. SCMD program to find the maximum element of a vector.

HAYES AND MUDCE: HYPERCUBE SUPERCOMPUTERS 1835

cated to this particular job. Execution of the program may
be summarized as follows: It reads in equal numbers of the
elements of v into each node, forms local maxima of these
numbers, and then selects, in turn, the largest of these local
maxima along successive dimensions of the hypercube. The
selection process collapses the active part of the compu-
tation into smaller and smaller cubes.

The call to whoami on line 009 returns the calling pro-
gram's logical node number (pn), the node on the host
board used for 110 communications (host), and the order
of the allocated subcube (dim). The call to nread on line
017 reads in an n-element slice of the vector v from the
host. The for loop on line 022 finds the maximum element
of the slice of v in the node (m is initially set to --03 on line
021). This i s done in parallel in each node. During this phase
of the computation, all 2d1m nodes are doing useful work
and the utilization of the allocated cube approaches 100%.
2dim ~ 1 new maxima are formed by comparing pairs of local
maxima in nodes that are immediate neighbors in the dimth
dimension. The new maxima are now confined to a (dim
- 1)-dimensional hypercube; in effect, the active cube i s
collapsed to half i t s initial size. This process of collapsing
the active cube by half and selecting a new smaller set of
maxima i s repeated until the maximum of all the elements
of v appear in logical node 0. The selection of the maximum
among the nodes simulates a tree of comparators. Figure
7 illustrates this for a 3-cube.

dimensions

3

t

0-cube
dimension 1

dimension 2 dczh ::":: dimansion 3

1-cube

Fig. 7. Comparator tree to find the maximum.

The for loop that begins on line 024 starts at the highest
dimension (dim) and finds the larger of each pair of local
maxima in nodes that are adjacent in the highest dimen-
sion. It repeats this, stepping through all the dimensions.
Line 028 selects the nodes (pns) in the part of the hyper-
cube that remains active after collapsing along the (i + 1) s t
dimension. The neighboring nodes (npns) of the pns are
those whose addresses differ in the i t h bit position. Their
addresses are calculated in the line 035 by performing the
EXCLUSIVE-OR operation (-) on p n and 2'l-l). Line 036 par-
titions the active nodes into two sets: those that are to
receive local maxima (line 043) and those that send them
(line 041). Line 044 finds the larger of the received value

and the local maxima already present in the node. Those
nodes that send will not be active in the next iteration of
the loop. Line 053 transmits the result from node 0 to the
host.

V. APPLICATIONS

Figure 8 shows a representative l i s t of applications of
hypercube computers. This i s by no means an exhaustive
list, but it does illustrate the wide range of applications to

Mathematics
Conipurational geometry
Prime number generation

P a i c l e transpon
Lattice gauge theory
Molecular dynamics simulation

Polymer simulation
Chemical reaction dynamics

Seismic data processing

Resource allocation

Game playing
Generalized search

Placement, layout arid routing
Circuit simulation

Image processing and computer vision
Image restoration
Image encodingldecoding
Object recognition

Airfoil simulation
Electromagnetic scattering
Robot ann control algorithms
Darahases and tile systems
Soiling

Physics

Chemistry

Geology

Operations research

Anificial intelligence

Coniputei-aided design for VLSI

Other

Fig. 8. List of applications.

which hypercubes are being applied. For a detailed picture
of these applications, the reader i s referred to [44], [45], the
book by Fox et al. [46], and the book by Reed and Fujimoto
[47]. Although the number of applications has grown rap-
idly, they are predominantly in the area of scientific com-
puting in which the behavior of a physical system i s being
analyzed. For the majority of these applications, the par-
allelism can be determined at compile-time and depends
on a simple partitioning of the problem domain which i s
often a physical space. For example, in the particle trans-
port problemsof photons in afusion plasma[48], the under-
lying algorithm is a Monte Carlo method which divides
physical space into equal subregions, then simulates par-
ticle behavior for each space independently, and finally
averages the results obtained from the separate Monte
Carloexperiments. Similarly, in thecaseof many image pro-
cessing algorithms, as we will see below, the image i s par-
titioned into subimages of equal size that are assigned to
separate processors.

In contrast to the applications with compile-time paral-
lelism, hypercubes are also beginning to be used in appli-
cations where the degree of parallelism cannot be deter-
mined before the program is run, and where, consequently,
load balancing of work among the processors at run-time
becomes an issue. Examples from Fig. 8 are database appli-
cations, where addition and deletion of records has the
potential to cause some processors to be underutilized, and
resource allocation algorithms, which are usually solved

1836 PROCEEDINGS OF THE IEEE, VOL. 77, NO. 12, DECEMBER 1989

using branch-and-bound algorithms, as will also be exam-
ined further. These algorithms are particularly "dynamic"
in their behavior because they spawn work in an unpre-
dictable fashion during their execution.

In the remainder of this section we review in detail two
applications that typify both ends of the spectrum: obvious
compile-time parallelism and dynamic or run-time paral-
lelism. The first i s an image processing application which
has a large degree of natural parallelism. By making use of
the embedding ideas of Section Ill, it can be implemented
on a hypercube in afairly straightforward fashion. The sec-
ond i s the 0-1 integer linear programming (ILP) problem.
This is one of the simplest examples of a large class of algo-
rithms called branch-and-bound methods, which are used
in artificial intelligence and operations research. Unlike the
majority of applications of hypercubes, in which the work
of each node can be scheduled apr ior i by the programmer,
branch-and-bound programs schedule processes dynam-
ically at run-time. At first sight, this would seem to make
them inappropriate for hypercubes because of the com-
munications overhead associated with dynamic schedul-
ing. Like the implementation of chess on a hypercube
reported in [49], the branch-and-bound application shows
that many problems hitherto considered unparallelizable
have, in fact, a substantial content of exploitable parallel-
ism.

A. Image Processing

The term image processing covers an important class of
techniques that include the encoding/decoding of images
for transmission, the enhancement and restoration of noisy
images, the extraction of features such as edges, and the
segmentation of images for the purposes of image under-
standing [50]. An image i s a2-dimensional mesh of elements
(pixels) that can take on a finite number of values (typically
256). These values, or gray-levels, represent the light inten-
sity at each point in the image.

A widely used image-processing technique i s to convolve
the image with a finite impulse response (FIR) function.
Depending on the particular FIR function, this operation
can be used for edge detection, template matching, noise
removal, and general filtering. The FIR function is defined
as an m x m matrix K(a, P) of constant coefficients referred
to as the kernel. The kernel i s moved across the image in
one-pixel steps to implement the convolution function. At
each step the pixel Pin(/, j) coinciding with the center of the
kernel i s replaced by Pour(i, j) , such that,

a = Lrni2J (3= ,mi21

c Pl,,(i, j) K (a , P) = a=-Im/21 i _ i = - [m / r J

A typical example of an image-processing algorithm involv-
ing the convolution of the image with FIR functions i s the
Sobel edge detection algorithm [51]. The image i s con-
volved with the each of the two FIR kernels shown in Fig.
9 (an integer approximation to the exact kernels i s shown).
The results of the convolution are the two images e, and
ey where e,(;, j) i s an M x M array of x-direction edge (gra-
dient) strengths, and ey(i,j) i s an M x M mesh of y-direction
edge (gradient) strengths. These two arrays are then com-
bined to form a combined edge strength array, €, and an
edge direction array, 8 where

E(;, j) =

Fig. 9.

and

A *

The Sobel edge detector kernels.

It can be seen from these equiitions that equal-size areas
of the image require equal amounts of processing. There-
fore, the natural approach to executing these algorithms on
hypercubes i s to partition the imiige into subimages of equal
size and assign each subimage .o a separate node proces-
sor. The subimages can be proc2ssed in parallel, using the
mesh embedding technique of jection Ill to map adjacent
subimages to adjacent nodes of the hypercube. Figure 10

Image of .I/ I .I/ $ixels

'I
01

11

I O

Subimage of x F pixels

Fig. 10. Partitioning the image.

Assign this subimage
to node 01 11

Data required
\

by A

illustrates this for an image of 2/1 x M pixels and a 4-cube;
here the image i s partitioned into 16 equal subimages.

In general, convolving with an FIR function i s imple-
mented in theSCMD modeofSx t ion IV.Theonlypotentia1
contributor to inefficiency i s the communication overhead
that results from the need to exchange data around the
edges of each subimage to allow the edge pixels to be con-
volved with the kernel. This i j also illustrated in Fig. IO,
which shows a subimage in processor A and the data
(shaded) that have to be move j from adjacent processors.
The number of pixels that has to be transferred is roughly
2 M m I f i if n i s even, and 3Mn;lCN if n i s odd. (Recall that
m x m is the size of the kerne , M x MIN is the size of the
subimage, and N = 2" i s the liumber of processors). The
communication time necessary to move the pixels is pro-
portional to their number. Hobdever, as we have seen, com-
munications are often perforried as DMA operations and
can be completely overlapped with processing. Of course,
for large kernels and small su bi nages a point can be reached
where overlap is impossible and communication times start

HAYES AND MUDGE: HYPERCUBE SUPERCOMPUTERS 1837

to dominate. This highlights the importance of having suf-
ficiently large problems for a particular size of hypercube
if i t s efficiency i s to be maintained [52]. Results reported in
[53] showthat convolvingwith a simple FIR kernel can easily
be performed at video frame rates (thirty 512 x 512 images
per second).

It can be shown that if the discrete Fourier transform and
i ts inverse are implemented by the FFT algorithm and if m
i s greater than about 10 [54], then it i s more efficient to per-
form convolution in the frequency domain for a 512 x 512
image. The hypercube network i s well suited to efficient
implementation of the FFT, with communication occurring
between pairsof adjacent nodes[55].Thedata layout shown
in Fig. 10 i s also appropriate for calculating the FFTs, and
for computing their product in the frequency domain. The
FFT and i ts inverse require data to be communicated
between subcubes, that is, between adjacent regions in Fig.
I O . These, of course, are in adjacent processors.

B. Branch-and-Bound Algorithms

Our second representative application area for hyper-
cubes concerns problems for which there exists no com-
putationally efficient "direct" solution. A solution i s often
found via a heuristic search through a large solution space.
Unguided search, however, can easily become inefficient
as many of these problems are at least NP-complete. Several
techniques have been developed to guide the search and
improve i ts average efficiency. The most general of these
techniques is the branch-and-bound (B&B) algorithm [56],
which has been used to solve some well-known problems,
including the traveling salesman problem [57], the knap-
sack problem [58], and many of the heuristic search algo-
rithms in artificial intelligence such as A*, AO", and alpha-
beta [59].

The branching action of a B&B algorithm is performed by
building a search tree, called a B&B tree, over the problem
space of interest. The root of the B&B tree represents the
complete problem space, and children nodes represent
subspaces. The branching process proceeds from the root
to the leaves of the tree, systematically partitioning sub-
spaces into smaller ones. The leaf nodes represent sub-
spaces that are small enough to be exhaustively searched
for solutions. A subproblem P, can be characterized by the
valueofanobjective function f,which isdefinedasthevalue
of the best solution that can be obtained from P,. This value
i s not known, however, until the subtree rooted at P, iscom-
pletely expanded. Instead another function h, referred to
as the lower bound function, i s used as an estimate of f. In
general, h i s a heuristic function that is much easier to com-
pute than f.

A B&B algorithm consists of four major procedures: 1)
selection, 2) branching, 3) elimination, and 4) termination
test. The selection procedure selects a subproblem from
the set of subproblems that have been generated but not
yet examined (the active subproblems). The selection is per-
formed according to the heuristic selection function h
which determines the order in which the subproblems are
selected for expansion. A commonly used heuristic i s best-
first search, in which h i s a lower bound estimate of the
objective function f. Subproblems with smaller lower
bounds are selected first. The branching procedure exam-

ines the currently selected subproblem and uses problem-
specific methods to break it into smaller-sized subprob-
lems. The elimination step examines these newly created
subproblems and deletes the ones that cannot lead to bet-
ter solutions than those already found. To accomplish this,
a special subproblem referred to as the incumbent is used
to store the best feasible solution discovered during the
search. A subproblem is deleted if its lower bound is greater
than or equal to that of the incumbent. Finally, the ter-
mination test procedure eliminates a new subproblem that
cannot lead to feasible solutions. Again, problem-specific
techniques are used to accomplish this.

We now describe a specific problem that uses the B&B
algorithm, viz., the0-1 ILP problem. This i s an optimization
problem in which it i s desired to minimize the value of a
linear objective function f (x , , x 2 , . . . , x,) subject to a set
of constraints. The variables (x , , x 2 , . . . , xn), can take only
the values 0 or 1. The problem can be more formally stated
as follows:

I7

Minimize f = clxI
I - 1

subject to the constraints
n

/ = , X a x ' I I > b , - / = I I , 2 . . . , m

xI E (0, 1) j = 1, 2, . . . , n

It can be assumed, with no loss of generality, that the coef-
ficients cI, = 1, 2, . . . , n are nonnegative. The solution
method involves systematically assigning zeros and ones
to some of the xI variables to obtain subproblems. A sub-
problem which has the smallest lower bound is selected
from the list of active subproblems. An unassigned variable
is picked and i s assigned the values 0 and 1 to create two
new subproblems. Each subproblem is evaluated and, if it
represents a feasible solution and i t s lower bound i s less
than that of the incumbent, then it becomes the new incum-
bent. Furthermore, all subproblems on the l i s t with lower
bounds greater than the new incumbent are deleted from
the l ist . If the subproblem cannot lead to a feasible solution
it is deleted. Finally, the subproblem is inserted back on the
l i s t if it is not presently feasible and i t s lower bound i s less
than that of the incumbent. The algorithm continues by
selecting another subproblem from the list. The algorithm
terminates when the list becomes empty.

We consider two parallel implementations of the fore-
going B&B algorithm on hypercube multiprocessors. The
first implementation, referred to as the Central List (CL)
algorithm, consists of two major components: a master pro-
cess which runs on the host and N slave processes which
run on the nodes of the hypercube. The master process
maintains the l i s t of active subproblems and th. incum-
bent, selects N subproblems from the list, and assigns one
subproblem to each slave process. The N subproblems
selected have the best bounds among the active subprob-
lems. Each slave process then expands i t s subproblem, gen-
erates children subproblems and calculates their lower
bounds. It also performs the lower bound, feasibility, and
termination tests on the subproblems it generates. The
results are then sent back to the master process, which

1838 PROCEEDINGS OF THE IEEE, VOL. 77, NO. 12, DECEMBER 1989

inserts them on the list. The algorithm terminates when the
list of active subproblems becomes empty and all the slave
processes are idle.

The CL algorithm has the advantage of expanding sub-
problems whose bounds are the best globally. This is
advantageous because subproblems that have smaller
lower bounds are more likely to lead to solutions than oth-
ers that have larger lower bounds. The algorithm, however,
has some serious disadvantages. It requires two commu-
nication messages for each subproblem expansion. The first
i s required to send the subproblem from the host to the
node for expansion. The second is needed to carry the newly
created subproblems from the node to the host. Com-
munication with the host becomes a bottleneck that
reduces the performance of the algorithm.

The second B&B implementation, known as the Distrib-
uted List (DL) algorithm, attempts to put the resources of
the hypercube to better use that the CL algorithm by dis-
tributing the list of active subproblems and a copy of the
incumbent across the processing nodes. It employs N + 1
processes, each maintaining its own subset of the list. A
supervisor process initiates the computation by generating
N subproblems and assigning one to each of the remaining
N processes. Each process then expands subproblems from
its local list. It also performs the lower bound test, the fea-
sibility and termination tests, and inserts the results back
on its local l is t .

In our implementation on an NCUBE/ten [60], [61] the host
runs the supervisor process while each of the N processing
nodes run one of the other processes. A mechanism i s
employed by which the load can be balanced and the sub-
problems distributed across the processes. When a process
becomes idle it requests subproblems from neighboring
processes in the system. The process that receives the
request examines its own list of active subproblems and
either sends a portion of it to the requesting process or den-
ies the request i f its own list i s too small to divide. In our
implementation, a processor requests subproblems from
one of its neighbors in the hypercube. It sends one half of
its subproblems to an idle processor requesting subprob-
lems.

Because the DL algorithm maintains multiple copies of
the incumbent, processes can find feasible solutions inde-
pendently and update their own incumbents. In the DL
algorithm, once an incumbent i s updated, its new value i s
broadcasted to al l other processe's. Figure 11 shows the

1 4 1 6 6 4

PROCESSORS

Fig. 11. Speedup of the CL and DL algorithms on the
NCUBEiten.

speedup measured for the two algorithms for various
hypercube sizes. In the CL algo-ithm, the speedup i s rea-
sonable for up to 16 processors. Little is gained by increas-
ing the number of processors beyond that. This can be
attributed to host-to-node comm unication overhead which
increases as the cube size increases, and to load imbalance
resulting from communication celays. The performance of
the DL algorithms shows that i distributed-list approach
has better performance than 1he CL algorithm. This is
expected since there i s no bott eneck in communication;
the communication bandwidth of the hypercube i s utilized
more efficiently. The performan1:e of the two algorithms on
a64-process hypercube i s comp ired to the performance of
the corresponding serial algorithm on the VAX 11/780 and
the IBM 3090 (single processor) in Fig. 12.

EXECUTION ' W E (SEC)
-3 -

VAX IEM 30911 CL DL
111780 NCUEElten

Fig. 12. Execution time for various systems.

VI. DISCUSSION

As we have seen, hypercube t~ ultiprocessors are the real-
ization of a concept that has beeii studied from a theoretical
viewpoint for nearly 30years. Th 'y represent one of the first
applications of massive parallidism to commercial com-
puters. Most of the current hype rcubes can attain peak per-
formance levels approaching i hose of traditional vector
supercomputers. Success in .caching these levels for
important practical applications has demonstrated not only
theviabilityof hypercube super:omputers, but alsothefea-
sibility of massively parallel distributed-memory com-
puters, in general. In particulzr, the assumptions under-
lying Amdahl's law' which places severe limits on the
achievable speedup due to parallelism, are now seen as not
applying to hypercube-class machines as they do to con-
ventional vector architectures 521.

Nevertheless, several factors still make it difficult to
achieve supercomputing perfo -mance with current hyper-
cubes, including the small meniory capacity and I/O band-
width available in many of these machines. Most important,
however, i s the different style of programming required for
hypercubes and other distributed-memory machines. It i s
not possible now to take an 01 j sequential program (a so-
called "dusty deck") and execute it directly on a hypercube
computer. Such programs m Jst be restructured, often

'Amdahl's law states that the spe ?dup Sof an n-processor system
is n/(l + (n - I j f) , where fdenotes :he fraction of nonparallelizible
operations. Thus, no matter how large n becomes, S can never
exceed l l f .

HAYES AND MUDCE: HYPERCUBE SUPERCOMPUTERS 1839

extensively, in order to achieve reasonable speedups. There
are presently no “parallelizing” compilers or the like for
automatic program restructuring, comparable to the vec-
torizing tools available for pipelined supercomputers. The
design of automatic parallelizers for hypercubes, now in
the early stages of research, is likely to provide a major
impetus to the use of hypercube computers outside the sci-
entific and research community, which accounts for most
current hypercube usage. In addition, more user-friendly
program development environments, standards for par-
allel programming languages and operating systems, and
shareable software libraries are all likely to have a major
positive influence on the use of these machines.

The rapid technological developments in VLSl that made
hypercube computers feasible in the first place can be
expected to continue to reshape these machines and lead
to further improvements in their performancekost ratio.
New IC technologies will undoubtedly allow more pow-
erful processors, larger memories, and more sophisticated
interconnection techniques to be incorporated into future
hypercubes. The most profound changes in the architec-
ture of these machines seem likely to occur in their inter-
connection technology. The introduction of fast node-to-
node routing circuits makes a hypercube computer seem
to a programmer like a completely connected system in
which each node i s directly connected to all others, i.e., all
nodes are neighbors. In such an environment, essentially
any application graph can be embedded efficiently into the
computer provided a sufficient number of nodes are avail-
able. This development i s likely to expand the range of
applications that can use these machines and to simplify
their programming. If this occurs, then the hypercube wil l
appear as merely the internal skeleton of an extremelygen-
era1 and flexible computer of essentially unlimited poten-
tial.

REFERENCES

111

[21

(31

141

151

I61

171

I81

[91

I1 01

I111

K. Hwang, “Advanced parallel processing with supercom-
puter architectures,” in Proc. /€E€, pp. 1348-1379, Oct. 1987.
Intel Scientific Computers. iPSC System Overview. Beaver-
ton, Oregon, 1986.
P. J . Denning, “Parallel computing and its evolution,” Com-
munications of the ACM, vol. 29, pp. 1163-1167, Dec. 1986.
Sequent Computer Systems, Inc. Balance Technology Sum-
mary. Beaverton, OR 97006-6063, 1984.
Encore Computer Corporation. Multimax Technical Sum-
mary, rev. ed. Marlboro, MA, May 1985.
W. Crowther et al., ”Performance measurements on a 128-
node Butterfly parallel processor,” in Proc. 7985 lnt. Conf. on
Parallel Processing, pp. 531-540, Aug. 1985.
C. F. Pfister eta/., “The IBM research parallel processor pro-
totype (RP3): introduction and architecture,” in Proc. 7985lnt.
Conf. on Parallel Processing, pp. 764-771, Aug. 1985.
H. J . Siegel, lnterconnection Networks for Large-Scale Parallel
Processing: Theory and Case Studies. Lexington, MA: Lexing-
ton Books, 1985.
I . P. Hayes, T. N. Mudge, Q. F . Stout, S. Colley, and J. Palmer.
”A microprocessor-based hypercube supercomputer,“ /E€€

J. S. Squire and S. M. Palais. “Physical and logical design of
a highly parallel computer,’’ Department of Electrical Engi-
neering, University of Michigan, Ann Arbor, MI, Technical
Report, Oct. 1962.
- , “Programming and design considerations for a highly
parallel computer,’‘ in Proc. Spring joint Computer Conf., pp.

MICRO, pp. 6-17, Oct. 1986.

395-400, 1963.

W. Millard, “Hyperdimensional pP collection seen function-
ing as mainframe,” Digital Design, vol. 5, Nov. 1975.
H. Sullivan and T. R. Bashkow, “A large scale, homogeneous,
fully distributed parallel machine I, in Proc. ComputerArchi-
tecture Symp., pp. 105-117, 1977.
H. Sullivan, T. R. Bashkow, and D. Klappholz, “A large scale,
homogeneous, fully distributed parallel machine II, in Proc.
Computer Architecture Symp., pp. 118-124, 1977.
M. C. Pease, “The indirect binary n-cube microprocessor
array,” IEEE Trans. Computers, vol. C-26, pp. 458-473, May
1977.
C. L. Seitz, “The Cosmic Cube,” Communications ACM, vol.
28, pp. 22-33, Jan. 1985.
J. Tuazon, J. Peterson, M. Pniel, and D. Liderman, “Caltech/
JPL Mark II hypercube concurrent processor,” in Proc. 1985
lnt. Conf. on Parallel Processing, pp. 666-671, Aug. 1985.
J. Peterson, J. Tuazon, D. Liderman, and M. Pniel, “The Mark
Ill hypercube-ensemble concurrent computer,’’ in Proc. 1985
lnt. Conf. on Parallel Processing, pp. 71-73, Aug. 1985.
A. Karp, ”What price multiplicity?“ Communications ACM,
vol. 30, pp. 7-9, Jan. 1986.
G. R. Montry, J. L. Custafson, and R. E. Benner, “Development
of parallel methods for a 1024-processor hypercube,” SlAM
). Scientific and Statistical Computing, vol. 9, pp. 1-32, July
1988.
J. Dongarra, A. Karp, and K. Kennedy, “Winners achieve
speedup of 400,” /E€€ Software, pp. 1-5, May 1988.
J. Custavson etal.,“Thearchitectureof a homogeneous mul-
tiprocessor,“ in Proc. 1986 lnt. Conf. on Parallel Processing,

Intel Scientific Computers. lnteliPSU2. Beaverton, OR 97006,
1988.
T. H. Dunigan. Performance of a second-generation hyper-
cube. Oak Ridge National Lab., Oak Ridge, TN, Technical
Report ORNLITM-10881, Nov. 1988.
Thinking Machines Corp., Connection Machine Model CM-2
Technical Summary. Technical Report HA87-4, April 1987.
Ametek Corp. Series 2010. Monrovia, CA, 1988.
T. N. Mudge, G. D. Buzzard, andT. S. Abdel-Rahman,”A high
performance operating system for the NCUBE,” in Hyper-
cube Multiprocessors 7987, M. T. Heath, ed. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, pp. 90-99,
1987.
W. J. Dally and C. L. Seitz, “The torus routing chip,” Distrib-
uted Computing, vol. 1, pp. 187-196, 1986.
E. Chow eta/., “Hyperswitch network for the hypercube com-
puter,” in 15th Ann. lnt. Symp. on Computer Architecture,
pp. 90-99, May 1988.
C. D. Buzzard, ”High Performance Communications for
Hypercube Multiprocessors.” Ph.D. thesis, University of
Michigan, 1988.
W. J. Dally and C. L. Seitz, “Deadlock-free message routing
in multiprocessor interconnection networks,” IEEE Trans.
Computers, vol. C-36, pp. 547-553, May 1987.
F. Harary, J. P. Hayes, and H. J . Wu, “A survey of the theory
of hypercube graphs,” Comput. Math. Applic., vol. 15, pp.

L. C. Valiant, ”A scheme for parallel communication,” SlAM
/. Computing, vol. 11, pp. 350-361, May 1982.
F. Harary. Graph Theory. Reading, MA: Addison-Wesley, 1969.
S. Dutt and J. P. Hayes, “On allocating subcubes in a hyper-
cube multiprocessor,” in Proc. 3rd lnt. Conf. on Hypercube
Concurrent Computers & Applications, vol. I, pp. 801-810, Jan.
1989.
M. Livingston and Q. F. Stout, ”Embeddings in hypercubes,”
Math. Comp. Modelling, vol. 11, pp. 222-227, 1988.
D. A. Buell et al., “Parallel algorithms and architectures:
Report of a workshop,”). Supercomputing, pp. 301-325,1988.
ParaSoft Corp. Programming Parallel Computers Using the
EXPRESS System, Mission Viejo, CA 92692, 1989.
R. M. Clappand T. N. Mudge, ”ADAon a hypercube,” in Proc.
3rd lnt. Conf. on Hypercube Concurrent Computers & Appli-
cations, vol. I, pp. 399-408, Jan. 1989.
D. Gelernter, “Generative communication in Linda,” ACM
Trans. Prog. Lang. Syst., vol. 7, pp. 80-112, Jan. 1985.

pp. 649-652, Aug. 1986.

277-289, 1988.

1840 PROCEEDINGS OF THE IEEE, VOL. 77, NO. 12, DECEMBER 1989

WI

R. Pountain, A Tutorial Introduction to Occam Programming.
lnmos Corp., Colorado Springs, CO, 1983.
R. H. Perrott, Parallel Programming. Woking, England: Addi-
son-Wesley, 1987.
C. Moler and D. S. Scott. Communication Utilities fortheiPSC.
iPSC Technical Report 2, Intel Corp., Aug. 1986.
Hypercube Multiprocessors 1986, M. T. Heath, ed. Philadel-
phia, PA: Society for Industrial and Applied Mathematics,
1986.
Hypercube Multiprocessors 1987. M. T. Heath, ed. Philadel-
phia, PA: Society for Industrial and Applied Mathematics,
1987.
G. Fox et al., Solving Problems on Concurrent Processors.
Englewood Cliffs, NI: Prentice-Hall, 1988.
D. A. Reed and R. M. Fujimoto, Multicomputer Networks:
Message-BasedParallelProcessing. Cambridge, MA: The MIT
Press, 1987.
W. R. Martin,T. C. Wan,T. S.Abdel-Rahman,andT. N. Mudge,
”Monte Carlo photon transport on shared memory and dis-
tributed memory parallel processors,” Int. 1. Supercomputer
App., vol. 1, pp. 57-74, Fall 1987.
E. W. Felten and S. W. Otto, “Chess on a hypercube,” in Proc.
3rd Int. Conf. on Hypercube Concurrent Computers & Appli-
cations, Vol. I/, pp. 1329-1341, Jan. 1989.
A. Rosenfeld and A. C. Kak, Digital Picture Processing. New
York: Academic Press, 1976.
J . M. S. Prewitt, Object enhancement and extraction. New
York: Academic Press, 1970.
1. L. Custafson, “Reevaluating Amdahl’s law,” Communica-
tions ACM, vol. 31, pp. 532-533, 1988.
T. N. Mudge and T. S. Abdel-Rahman, “Vision algorithms for
hypercube machines,”), Parallel and Dist. Computing, vol.

- , Specialized Computer Architecture for Robotics and
Automation. chaDter Architecture for robot vision. New

4, pp. 79-94, 1987.

York, NY: Gordo; and Breach Science Publishers, 1987, pp.
103-149.

[55] P. N. Swarztrauber, Multiprocessor FFTs. National Center for
Atmospheric Research, Boulder, CO, 1986.

[56] E. L. Lawler and D. W. Wood, ”Branch-and-bound methods:
A survey,” Ops. Res., vol. 14, pp. 699-719, 1966.

[57] D. W. Sweeney, J, D. C. Little, K. C. Murty, and C. Karel, ”An
algorithm for the traveling salesman problem,” Ops. Res., vol.

[58] C. lngargiola and J . Korsh, “A general algorithm for one-
dimensional knapsack problems,” Ops. Res., vol. 25, pp. 752-
759, 1977.

[59] V. Kumar and L. Kanal, ”A general branch and bound for-
mulation for understanding and synthesizing AND/OR tree
search procedures,” Artificial Intelligence, vol. 21, pp. 179-
198,1983.

[60] T. S. Abdel-Rahman and T. N. Mudge, “Parallel branch and
bound algorithms on hypercube multiprocessors,” in Proc.
3rd Conf. on Hypercube Concurrent Computers & Applica-
tions, vol. I, pp. 1492-1499, Jan. 1989.

[61] T . S. Abdel-Rahman, “Parallel Processing of Best-First Branch
and Bound Algorithms on Distributed Memory Multipro-
cessors,” Ph.D. thesis, University of Michigan, 1989.

11, pp. 972-989, 1963.

John P. Hayes(f ellow, IEEE) received the B.E.
degree from tlie National University of Ire-
land,Dublin,iii1965,andtheM.S andPh.D.
degrees from the University of Illinois,
Urbana, in 19117 and 1970, respectively, all
in electrical eiigineering.

While at the University of Illinois he par-
ticipated in tht~designoftheILLlACIIIcom-
puter and car led out research in the area
of fault diagnc 51s of digital systems. In 1970
he joined the Operations Research Group

at the Shell Benelux Computing Ceiiter of the Royal Dutch Shell
Company in The Hague, The Nether ands, where he was involved
in mathematical Programming and ,oftware development. From
1972 to 1982 he was a faculty membc r of the Departments of Elec-
trical Engineering and Computer ‘cience of the University of
Southern California, Los Angeles. HE is currently a Professor in the
Electrical Engineering and Computer Science Department of the
University of Michigan, Ann Arbor. Iiis research interests include
computer architecture; parallel prc cessing; fault tolerance and
reliability; and computer-aided desi€ n and testing of VLSl systems.

Dr. Hayes was Technical Program Chairman of the 1977 Inter-
national Conference on Fault-Tolerar t Computing, He i s the author
of over a hundred technical papers and several books, including
Digital System Design and Micropr~cessors (McCraw-Hill, 1984)
and Computer Architecture and Or)ranization, 2nd Ed. (McGraw-
Hill, 1988). He served a5 Editor of th? Computer Architecture and
Systems Department of Communications of the ACM from 1978 to
1981, and was Guest Editor of the Jiine 1984 Special Issue of Iff€
Transactions on Computers. He was the founding Director of the
Advanced Computer Architecture Laboratory at the University of
Michigan from 1985 to 1988. He i s a inember of the Association for
Computing Machinery and Sigma I.

Trevor Mud;e (Senior Member, IEEE)
received the B.Sc. degree in cybernetics
from the Uni ~ersityof Reading, England, in
1969, and the M.S. and Ph.D. degrees in
computer science from the University of
Illinois, Urb;.na, in 1973 and 1977, respec-
tively.

While at tl. e University of Illinois he par-
ticipated in the design of several special
purpose coinputers and did research in
comouter arzhitecture. Since 1977. he has

I

beenon thefacuItyoftheUniversityof Michigan,Ann Arborwhere
he hastaughtclasseson logic desigr , CAD,computerarchitecture,
and programming languages. He is presently an Associate Pro-
fessor of Electrical Engineering and Computer Science, and Direc-
tor of the Advanced Computer Arct itecture Lab. In addition to his
position a5 a faculty member, he i! a consultant for several com-
puter companies in the areas of ar:hitecture and languages.

Dr. Mudge is the author of mort‘ than 80 papers on computer
architecture, programming languag es, VLSl design, and computer
vision, and he holds a patent in c4)mputer aided design of VLSl
circuits. He is a member of the ACIVI and of the British Computer
Society.

HAYES AND MUDCE: HYPERCUBE SUPERCOMPUTERS 1841

